skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Moving the California distributed CMS XCache from bare metal into containers using Kubernetes
The University of California system maintains excellent networking between its campuses and a number of other Universities in California, including Caltech, most of them being connected at 100 Gbps. UCSD and Caltech Tier2 centers have joined their disk systems into a single logical caching system, with worker nodes from both sites accessing data from disks at either site. This successful setup has been in place for the last two years. However, coherently managing nodes at multiple physical locations is not trivial and requires an update on the operations model used. The Pacific Research Platform (PRP) provides Kubernetes resource pool spanning resources in the science demilitarized zones (DMZs) in several campuses in California and worldwide. We show how we migrated the XCache services from bare-metal deployments into containers using the PRP cluster. This paper presents the reasoning behind our hardware decisions and the experience in migrating to and operating in a mixed environment.  more » « less
Award ID(s):
1541349 1148698 1826967
PAR ID:
10299945
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Doglioni, C.; Kim, D.; Stewart, G.A.; Silvestris, L.; Jackson, P.; Kamleh, W.
Date Published:
Journal Name:
EPJ Web of Conferences
Volume:
245
ISSN:
2100-014X
Page Range / eLocation ID:
04042
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the U.S., approximately 20% of graduating engineering students receive their university degree after transferring from a community college. Because the percentage of transfer students enrolled in California universities is higher than the national average, in 2016, the California State University (CSU) System launched the Graduation Initiative (GI) 2025 to raise graduation rates for transfer students. The CSU GI 2025 set goals to increase the two-year transfer graduation rate to 45% and the four-year transfer graduation rate to 85% by 2025 across all 23 CSU campuses. What has yet to be discussed extensively is which factors affect the transfer students’ success and its associated impact. This paper identified the critical success factors (CSFs) for transfer students’ success with the survey responses by transfer students in the Department of Civil Engineering at California State Polytechnic University, Pomona (Cal Poly Pomona). Identifying the CSFs is essential as sociocultural, academic, and environmental factors significantly affect transfer students' academic performance. The author composed a series of questions that fall into sociocultural, academic, and environmental factors (this survey was approved by the CPP IRB 23-003). A total of 41 transfer students responded to the survey, and the author identified CSFs for transfer students as 1) a sense of belonging, 2) networking with faculty, staff, and peers, and 3) advising for career development and available resources from the university. The identified factors should be addressed when the university develops a new program for transfer students. 
    more » « less
  2. The Prion protein is the molecular hallmark of the incurable prion diseases affecting mammals, including humans. The protein-only hypothesis states that the misfolding, accumulation, and deposition of the Prion protein play a critical role in toxicity. The cellular Prion protein (PrPC) anchors to the extracellular leaflet of the plasma membrane and prefers cholesterol- and sphingomyelin-rich membrane domains. Conformational Prion protein conversion into the pathological isoform happens on the cell surface.In vitroandin vivoexperiments indicate that Prion protein misfolding, aggregation, and toxicity are sensitive to the lipid composition of plasma membranes and vesicles. A picture of the underlying biophysical driving forces that explain the effect of Prion protein - lipid interactions in physiological conditions is needed to develop a structural model of Prion protein conformational conversion. To this end, we use molecular dynamics simulations that mimic the interactions between the globular domain of PrPCanchored to model membrane patches. In addition, we also simulate the Doppel protein anchored to such membrane patches. The Doppel protein is the closest in the phylogenetic tree to PrPC, localizes in an extracellular milieu similar to that of PrPC, and exhibits a similar topology to PrPCeven if the amino acid sequence is only 25% identical. Our simulations show that specific protein-lipid interactions and conformational constraints imposed by GPI anchoring together favor specific binding sites in globular PrPCbut not in Doppel. Interestingly, the binding sites we found in PrPCcorrespond to prion protein loops, which are critical in aggregation and prion disease transmission barrier (β2-α2 loop) and in initial spontaneous misfolding (α2-α3 loop). We also found that the membrane re-arranges locally to accommodate protein residues inserted in the membrane surface as a response to protein binding. 
    more » « less
  3. Abstract The pulse–reserve paradigm (PRP) is central in dryland ecology, although microorganismal traits were not explicitly considered in its inception. We asked if the PRP could be reframed to encompass organisms both large and small. We used a synthetic review of recent advances in arid land microbial ecology combined with a mathematically explicit theoretical model. Preserving the PRPs core of adaptations by reserve building, the model considers differential organismal strategies to manage these reserves. It proposes a gradient of organisms according to their reserve strategies, from nimble responders (NIRs) to torpid responders (TORs). It predicts how organismal fitness depends on pulse regimes and reserve strategies, partially explaining organismal diversification and distributions. After accounting for scaling phenomena and redefining the microscale meaning of aridity, the evidence shows that the PRP is applicable to microbes. This modified PRP represents an inclusive theoretical framework working across life-forms, although direct testing is still needed. 
    more » « less
  4. Additive manufacturing (AM) is prevalent in academic, industrial, and layperson use for the design and creation of objects via joining materials together in a layer upon layer fashion. However, few universities have an undergraduate course dedicated to it. Thus, using NSF IUSE support [grant number redacted for review] from the Exploration and Design Tier of the Engaged Student Learning Track, this project has created and implemented such a course at three large universities: Texas Tech (a Carnegie high research productivity and Hispanic Serving Institution), Kansas State (a Carnegie high research productivity and land grant university) and California State, Northridge (the largest of all the California State campuses and highly ranked in serving underprivileged students). Our research team includes engineering professors and a sociologist trained in assessment and K-12 outreach to determine the effects of the course on the undergraduate and high school students. We are currently in year two of the three years of NSF support. 
    more » « less
  5. Recently, wireless communication technologies, such as Wireless Local Area Networks (WLANs), have gained increasing popularity in industrial control systems (ICSs) due to their low cost and ease of deployment, but communication delays associated with these technologies make it unsuitable for critical real-time and safety applications. To address concerns on network-induced delays of wireless communication technologies and bring their advantages into modern ICSs, wireless network infrastructure based on the Parallel Redundancy Protocol (PRP) has been proposed. Although application-specific simulations and measurements have been conducted to show that wireless network infrastructure based on PRP can be a viable solution for critical applications with stringent delay performance constraints, little has been done to devise an analytical framework facilitating the adoption of wireless PRP infrastructure in miscellaneous ICSs. Leveraging the deterministic network calculus (DNC) theory, we propose to analytically derive worst-case bounds on network- induced delays for critical ICS applications. We show that the problem of worst-case delay bounding for a wireless PRP network can be solved by performing network-calculus-based analysis on its non-feedforward traffic pattern. Closed-form expressions of worst-case delays are derived, which has not been found previously and allows ICS architects/designers to compute worst- case delay bounds for ICS tasks in their respective application domains of interest. Our analytical results not only provide insights into the impacts of network-induced delays on latency- critical tasks but also allow ICS architects/operators to assess whether proper wireless RPR network infrastructure can be adopted into their systems. 
    more » « less