skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impact of the Elemental Composition of Exported Organic Matter on the Observed Dissolved Nutrient and Trace Element Distributions in the Upper Layer of the Ocean
Systematic regional variations in the ratio of nutrient depth gradients of dissolved inorganic carbon (ΔDIC): nitrate (ΔNO3): phosphate (ΔPO4) in the upper layer (300m) of the Pacific Ocean are observed. Regional variations in the ΔDIC/ΔNO3/ΔPO4 are primarily the result of three processes, that is, the C/N/P of organic matter (OM) being exported and subsequently degraded, nitrogen fixation and air-sea CO2 gas exchange. The link between the observed dissolved ΔDIC/ΔNO3/ΔPO4 and the C/N/P of exported OM is established using surface layer dissolved DIC, NO3 and PO4 budgets. These budgets, in turn, provide a means to indirectly estimate the C/N/P of OM being exported from the surface layer of the ocean. The indirectly estimated C/N/P of exported OM reach maxima in the subtropical gyres at 177/22/1 that is significantly greater than the Redfield ratio and a minimum in the equatorial ocean at 109/16/1 with both results agreeing with available observed particle C/N/P and ocean biogeochemical models. The budget approach was applied to a bioactive trace element (TE) using the measured dissolved Cadmium (Cd) to PO4 gradients to estimate the Cd/P of exported OM in the Pacific Ocean. Combining the budget method with the availability of high-quality dissolved nutrient and trace element data collected during the GOSHIP and GEOTRACES programs could potentially provide estimates of the C/N/P/TE of exported OM on global ocean scales which would significantly improve our understanding of the link between the ocean’s biological pump and dissolved nutrient distributions in the upper ocean.  more » « less
Award ID(s):
1736598
PAR ID:
10299967
Author(s) / Creator(s):
Editor(s):
Mikaloff Fletcher, Sara
Date Published:
Journal Name:
Global biogeochemical cycles
Volume:
35
Issue:
10
ISSN:
0886-6236
Page Range / eLocation ID:
e2020GB006902
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Systematic regional variations in the ratio of nutrient depth gradients of dissolved inorganic carbon (ΔDIC):nitrate (ΔNO3):phosphate (ΔPO4) in the upper layer (300 m) of the Pacific Ocean are observed. Regional variations in the ΔDIC/ΔNO3/ΔPO4are primarily the result of three processes, that is, the C/N/P of organic matter (OM) being exported and subsequently degraded, nitrogen fixation, and air‐sea CO2gas exchange. The link between the observed dissolved ΔDIC/ΔNO3/ΔPO4and the C/N/P of exported OM is established using surface layer dissolved DIC, NO3, and PO4budgets. These budgets, in turn, provide a means to indirectly estimate the C/N/P of OM being exported from the surface layer of the ocean. The indirectly estimated C/N/P of exported OM reach maxima in the subtropical gyres at 177/22/1, that is, significantly greater than the Redfield ratio and a minimum in the equatorial ocean at 109/16/1 with both results agreeing with available observed particle C/N/P and ocean biogeochemical models. The budget approach was applied to a bioactive trace element (TE) using the measured dissolved Cadmium (Cd) to PO4gradients to estimate the Cd/P of exported OM in the Pacific Ocean. Combining the budget method with the availability of high‐quality dissolved nutrient and TE data collected during the GOSHIP and GEOTRACES programs could potentially provide estimates of the C/N/P/TE of exported OM on global ocean scales which would significantly improve our understanding of the link between the ocean's biological pump and dissolved nutrient distributions in the upper ocean. 
    more » « less
  2. Abstract The biogeochemistry of rapidly retreating Andean glaciers is poorly understood, and Ecuadorian glacier dissolved organic matter (DOM) composition is unknown. This study examined molecular composition and carbon isotopes of DOM from supraglacial and outflow streams (n = 5 and 14, respectively) across five ice capped volcanoes in Ecuador. Compositional metrics were paired with streamwater isotope analyses (δ18O) to assess if outflow DOM composition was associated with regional precipitation gradients and thus an atmospheric origin of glacier DOM. Ecuadorian glacier outflows exported ancient, biolabile dissolved organic carbon (DOC), and DOM contained a high relative abundance (RA) of aliphatic and peptide‐like compounds (≥27%RA). Outflows were consistently more depleted in Δ14C‐DOC (i.e., older) compared to supraglacial streams (mean −195.2 and −61.3‰ respectively), perhaps due to integration of spatially heterogenous and variably aged DOM pools across the supraglacial environment, or incorporation of aged subglacial OM as runoff was routed to the outflow. Across Ecuador, Δ14C‐DOC enrichment was associated with decreased aromaticity of DOM, due to increased contributions of organic matter (OM) from microbial processes or atmospheric deposition of recently fixed and subsequently degraded OM (e.g., biomass burning byproducts). There was a regional gradient between glacier outflow DOM composition and streamwater δ18O, suggesting covariation between regional precipitation gradients and the DOM exported from glacier outflows. Ultimately, this highlights that atmospheric deposition may exert a control on glacier outflow DOM composition, suggesting regional air circulation patterns and precipitation sources in part determine the origins and quality of OM exported from glacier environments. 
    more » « less
  3. Abstract Export rates of organic matter (OM) were determined based on PO43−, NO3and O2budgets during GEOTRACES cruise GP15 in the Pacific Ocean that crossed subpolar, subtropical and equatorial regimes. Lowest OM export rates at 3–5 mmol C/m2/yr were found in the subtropical regions and highest rates at 9–12 mmol C/m2/yr were found in the equatorial and subpolar regions. Satellite based OM export rates showed similar regional trends but with a significantly larger range. The budget and satellite‐based OM export rates were 3–15× higher than estimates of particle loss rates based on234Th and sediment trap collections, with the differences primarily due to non‐particle forms of OM export and different integration times of methods. The efficiency of export varied from 0.1 to 0.3, with the lowest efficiencies in the subtropics and highest efficiencies in the subpolar and equatorial regions. 
    more » « less
  4. Realistic model representation of ocean phytoplankton is important for simulating nutrient cycles and the biological carbon pump, which affects atmospheric carbon dioxide (pCO2) concentrations and, thus, climate. Until recently, most models assumed constant ratios (or stoichiometry) of phosphorous (P), nitrogen (N), silicon (Si), and carbon (C) in phytoplankton, despite observations indicating systematic variations. Here, we investigate the effects of variable stoichiometry on simulated nutrient distributions, plankton community compositions, and the C cycle in the preindustrial (PI) and glacial oceans. Using a biogeochemical model, a linearly increasing P:N relation to increasing PO4 is implemented for ordinary phytoplankton (PO), and a nonlinearly decreasing Si:N relation to increasing Fe is applied to diatoms (PDiat). C:N remains fixed. Variable P:N affects modeled community composition through enhanced PO4 availability, which increases N-fixers in the oligotrophic ocean, consistent with previous research. This increases the NO3 fertilization of PO, the NO3 inventory, and the total plankton biomass. The accuracy of modeled surface nutrients is relatively unchanged. Conversely, variable Si:N shifts south the Southern Ocean’s meridional surface silicate gradient, which aligns better with observations, but depresses PDiat growth globally. In Last Glacial Maximum simulations, PO respond to more oligotrophic conditions by increasing their C:P. This strengthens the biologically mediated C storage such that dissolved organic (inorganic) C inventories increase by 34-40 (38-50) Pg C and 0.7-1.2 Pg yr-1 more particulate C is exported into the interior ocean. Thus, an additional 13-14 ppm of pCO2 difference from PI levels results, improving model agreement with glacial observations. 
    more » « less
  5. Abstract Ocean time‐series sites are influenced by both temporal variability, as in situ conditions change, as well as spatial variability, as water masses move across the fixed observation point. To remove the effect of spatial variability, this study made sub‐daily Lagrangian observations of trace elements and isotopes (Al, Sc, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb,232Th, and230Th) in surface water over a 12‐day period (July–August 2015) in the North Pacific near the Hawaii Ocean Time‐series Station ALOHA. Additionally, a vertical profile in the upper 250 m was analyzed. This dataset is intercalibrated with GEOTRACES standards and provides a consistent baseline for trace element studies in the oligotrophic North Pacific. No diel changes in trace elements could be resolved, although day‐to‐day variations were resolved for some elements (Fe, Cu, and Zn), which may be related to organic matter cycling or ligand availability. Pb concentrations remained relatively constant during 1997–2015, presenting a change from previous decreases. Nutrient to trace element stoichiometric ratios were compared to those observed in phytoplankton as an indication of the extent of biological trace element utilization in this ecosystem, providing a basis for future ecological trace element studies. 
    more » « less