skip to main content

Title: Genomic variation in captive deer mouse (Peromyscus maniculatus) populations
Abstract Background Deer mice (genus Peromyscus ) are the most common rodents in North America. Despite the availability of reference genomes for some species, a comprehensive database of polymorphisms, especially in those maintained as living stocks and distributed to academic investigators, is missing. In the present study we surveyed two populations of P. maniculatus that are maintained at the Peromyscus Genetic Stock Center (PGSC) for polymorphisms across their 2.5 × 10 9 bp genome. Results High density of variation was identified, corresponding to one SNP every 55 bp for the high altitude stock (SM2) or 207 bp for the low altitude stock (BW) using snpEff (v4.3). Indels were detected every 1157 bp for BW or 311 bp for SM2. The average Watterson estimator for the BW and SM2 populations is 248813.70388 and 869071.7671 respectively. Some differences in the distribution of missense, nonsense and silent mutations were identified between the stocks, as well as polymorphisms in genes associated with inflammation (NFATC2), hypoxia (HIF1a) and cholesterol metabolism (INSIG1) and may possess value in modeling pathology. Conclusions This genomic resource, in combination with the availability of P. maniculatus from the PGSC, is expected to promote genetic and genomic studies with this animal model.
; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
BMC Genomics
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Physiological systems often have emergent properties but the effects of genetic variation on physiology are often unknown, which presents a major challenge to understanding the mechanisms of phenotypic evolution. We investigated whether genetic variants in haemoglobin (Hb) that contribute to high-altitude adaptation in deer mice (Peromyscus maniculatus) are associated with evolved changes in the control of breathing. We created F2 inter-population hybrids of highland and lowland deer mice to test for phenotypic associations of α- and β-globin variants on a mixed genetic background. Hb genotype had expected effects on Hb–O2 affinity that were associated with differences in arterial O2 saturation in hypoxia. However, high-altitude genotypes were also associated with breathing phenotypes that should contribute to enhancing O2 uptake in hypoxia. Mice with highland α-globin exhibited a more effective breathing pattern, with highland homozygotes breathing deeper but less frequently across a range of inspired O2, and this difference was comparable to the evolved changes in breathing pattern in deer mouse populations native to high altitude. The ventilatory response to hypoxia was augmented in mice that were homozygous for highland β-globin. The association of globin variants with variation in breathing phenotypes could not be recapitulated by acute manipulation of Hb–O2 affinity,more »because treatment with efaproxiral (a synthetic drug that acutely reduces Hb–O2 affinity) had no effect on breathing in normoxia or hypoxia. Therefore, adaptive variation in Hb may have unexpected effects on physiology in addition to the canonical function of this protein in circulatory O2 transport.« less
  2. Abstract Background

    Complex organismal traits are often the result of multiple interacting genes and sub-organismal phenotypes, but how these interactions shape the evolutionary trajectories of adaptive traits is poorly understood. We examined how functional interactions between cardiorespiratory traits contribute to adaptive increases in the capacity for aerobic thermogenesis (maximal O2consumption,O2max, during acute cold exposure) in high-altitude deer mice (Peromyscus maniculatus). We crossed highland and lowland deer mice to produce F2inter-population hybrids, which expressed genetically based variation in hemoglobin (Hb) O2affinity on a mixed genetic background. We then combined physiological experiments and mathematical modeling of the O2transport pathway to examine the links between cardiorespiratory traits andO2max.


    Physiological experiments revealed that increases in Hb-O2affinity of red blood cells improved blood oxygenation in hypoxia but were not associated with an enhancement inO2max. Sensitivity analyses performed using mathematical modeling showed that the influence of Hb-O2affinity onO2max in hypoxia was contingent on the capacity for O2diffusion in active tissues.


    These results suggest that increases in Hb-O2affinity would only have adaptive value in hypoxic conditions if concurrent with or preceded by increases in tissue O2diffusing capacity. In high-altitude deer mice, the adaptive benefit of increasing Hb-O2affinity is contingent on the capacity to extract O2from the blood, whichmore »helps resolve controversies about the general role of hemoglobin function in hypoxia tolerance.

    « less
  3. ABSTRACT High-altitude environments, characterized by low oxygen levels and low ambient temperatures, have been repeatedly colonized by small altricial mammals. These species inhabit mountainous regions year-round, enduring chronic cold and hypoxia. The adaptations that allow small mammals to thrive at altitude have been well studied in non-reproducing adults; however, our knowledge of adaptations specific to earlier life stages and reproductive females is extremely limited. In lowland natives, chronic hypoxia during gestation affects maternal physiology and placental function, ultimately limiting fetal growth. During post-natal development, hypoxia and cold further limit growth both directly by acting on neonatal physiology and indirectly via impacts on maternal milk production and care. Although lowland natives can survive brief sojourns to even extreme high altitude as adults, reproductive success in these environments is very low, and lowland young rarely survive to sexual maturity in chronic cold and hypoxia. Here, we review the limits to maternal and offspring physiology – both pre-natal and post-natal – that highland-adapted species have overcome, with a focus on recent studies on high-altitude populations of the North American deer mouse (Peromyscus maniculatus). We conclude that a combination of maternal and developmental adaptations were likely to have been critical steps in the evolutionarymore »history of high-altitude native mammals.« less
  4. Animals native to the hypoxic and cold environment at high altitude provide an excellent opportunity to elucidate the integrative mechanisms underlying the adaptive evolution and plasticity of complex traits. The capacity for aerobic thermogenesis can be a critical determinant of survival for small mammals at high altitude, but the physiological mechanisms underlying the evolution of this performance trait remain unresolved. We examined this issue by comparing high-altitude deer mice ( Peromyscus maniculatus ) with low-altitude deer mice and white-footed mice ( P. leucopus ). Mice were bred in captivity and adults were acclimated to each of four treatments: warm (25°C) normoxia, warm hypoxia (12 kPa O 2 ), cold (5°C) normoxia or cold hypoxia. Acclimation to hypoxia and/or cold increased thermogenic capacity in deer mice, but hypoxia acclimation led to much greater increases in thermogenic capacity in highlanders than in lowlanders. The high thermogenic capacity of highlanders was associated with increases in pulmonary O 2 extraction, arterial O 2 saturation, cardiac output and arterial–venous O 2 difference. Mechanisms underlying the evolution of enhanced thermogenic capacity in highlanders were partially distinct from those underlying the ancestral acclimation responses of lowlanders. Environmental adaptation has thus enhanced phenotypic plasticity and expanded the physiologicalmore »toolkit for coping with the challenges at high altitude.« less
  5. Ruvinsky, Ilya (Ed.)
    Abstract Aerobic performance is tied to fitness as it influences an animal’s ability to find food, escape predators, or survive extreme conditions. At high altitude, where low O2 availability and persistent cold prevail, maximum metabolic heat production (thermogenesis) is an aerobic performance trait that is closely linked to survival. Understanding how thermogenesis evolves to enhance survival at high altitude will yield insight into the links between physiology, performance, and fitness. Recent work in deer mice (Peromyscus maniculatus) has shown that adult mice native to high altitude have higher thermogenic capacities under hypoxia compared with lowland conspecifics, but that developing high-altitude pups delay the onset of thermogenesis. This finding suggests that natural selection on thermogenic capacity varies across life stages. To determine the mechanistic cause of this ontogenetic delay, we analyzed the transcriptomes of thermoeffector organs—brown adipose tissue and skeletal muscle—in developing deer mice native to low and high altitude. We demonstrate that the developmental delay in thermogenesis is associated with adaptive shifts in the expression of genes involved in nervous system development, fuel/O2 supply, and oxidative metabolism pathways. Our results demonstrate that selection has modified the developmental trajectory of the thermoregulatory system at high altitude and has done so bymore »acting on the regulatory systems that control the maturation of thermoeffector tissues. We suggest that the cold and hypoxic conditions of high altitude force a resource allocation tradeoff, whereby limited energy is allocated to developmental processes such as growth, versus active thermogenesis, during early development.« less