Abstract Three-dimensional (3D) bioprinting is a promising technique for spatially patterning cells and materials into constructs that mimic native tissues and organs. However, a trade-off exists between printability and biological function, where weak materials are typically more suited for 3D cell culture but exhibit poor shape fidelity when printed in air. Recently, a new class of assistive materials has emerged to overcome this limitation and enable fabrication of more complex, biologically relevant geometries, even when using soft materials as bioinks. These materials include support baths, which bioinks are printed into, and sacrificial inks, which are printed themselves and then later removed. Support baths are commonly yield-stress materials that provide physical confinement during the printing process to improve resolution and shape fidelity. Sacrificial inks have primarily been used to create void spaces and pattern perfusable networks, but they can also be combined directly with the bioink to change its mechanical properties for improved printability or increased porosity. Here, we outline the advantages of using such assistive materials in 3D bioprinting, define their material property requirements, and offer case study examples of how these materials are used in practice. Finally, we discuss the remaining challenges and future opportunities in the development of assistive materials that will propel the bioprinting field forward toward creating full-scale, biomimetic tissues and organs.
more »
« less
3D Bioprinting of Cell‐Laden Hydrogels for Improved Biological Functionality
The encapsulation of cells within gel-phase materials to form bioinks offers distinct advantages for next-generation 3D bioprinting. 3D bioprinting has emerged as a promising tool for patterning cells, but the technology remains limited in its ability to produce biofunctional, tissue-like constructs due to a dearth of materials suitable for bioinks. While early demonstrations commonly used viscous polymers optimized for printability, these materials often lacked cell compatibility and biological functionality. In response, advanced materials that exist in the gel phase during the entire printing process are being developed, since hydrogels are uniquely positioned to both protect cells during extrusion and provide biological signals to embedded cells as the construct matures during culture. Here, an overview of the design considerations for gel-phase materials as bioinks is presented, with a focus on their mechanical, biochemical, and dynamic gel properties. Current challenges and opportunities that arise due to the fact that bioprinted constructs are active, living hydrogels composed of both acellular and cellular components are also evaluated. Engineering hydrogels with consideration of cells as an intrinsic component of the printed bioink will enable control over the evolution of the living construct after printing to achieve greater biofunctionality.
more »
« less
- PAR ID:
- 10300123
- Date Published:
- Journal Name:
- Advanced Materials
- ISSN:
- 0935-9648
- Page Range / eLocation ID:
- 2103691
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Bioprinting is an additive manufacturing technique that combines living cells, biomaterials, and biological molecules to develop biologically functional constructs. Three-dimensional (3D) bioprinting is commonly used as anin vitromodeling system and is a more accurate representation ofin vivoconditions in comparison to two-dimensional cell culture. Although 3D bioprinting has been utilized in various tissue engineering and clinical applications, it only takes into consideration the initial state of the printed scaffold or object. Four-dimensional (4D) bioprinting has emerged in recent years to incorporate the additional dimension of time within the printed 3D scaffolds. During the 4D bioprinting process, an external stimulus is exposed to the printed construct, which ultimately changes its shape or functionality. By studying how the structures and the embedded cells respond to various stimuli, researchers can gain a deeper understanding of the functionality of native tissues. This review paper will focus on the biomaterial breakthroughs in the newly advancing field of 4D bioprinting and their applications in tissue engineering and regeneration. In addition, the use of smart biomaterials and 4D printing mechanisms for tissue engineering applications is discussed to demonstrate potential insights for novel 4D bioprinting applications. To address the current challenges with this technology, we will conclude with future perspectives involving the incorporation of biological scaffolds and self-assembling nanomaterials in bioprinted tissue constructs.more » « less
-
Three-dimensional (3D) bioprinting is important in the development of complex tissue structures for tissue engineering and regenerative medicine. However, the materials used for bioprinting, referred to as bioinks, must have a balance between a high viscosity for rapid solidification after extrusion and low shear force for cytocompatibility, which is difficult to achieve. Here, a novel bioink consisting of poly(ethylene glycol) (PEG) microgels prepared via off-stoichiometry thiol–ene click chemistry is introduced. Importantly, the microgel bioink is easily extruded, exhibits excellent stability after printing due to interparticle adhesion forces, and can be photochemically annealed with a second thiol–ene click reaction to confer long-term stability to printed constructs. The modularity of the bioink is also an advantage, as the PEG microgels have highly tunable physicochemical properties. The low force required for extrusion and cytocompatibility of the thiol–ene annealing reaction also permit cell incorporation during printing with high viability, and cells are able to spread and proliferate in the interstitial spaces between the microgels after the constructs have been annealed. Overall, these results indicate that our microgel bioink is a promising and versatile platform that could be leveraged for bioprinting and regenerative manufacturing.more » « less
-
Abstract Engineered living materials (ELMs) are an emerging class of biohybrid materials with genetically programmable functionalities. Integrating ELMs with 3D bioprinting synergizes their biological programmability with the geometry‐driven functionality of 3D‐printed constructs, transforming these materials into practical products and engineering solutions. This integration also introduces a new paradigm in additive manufacturing that harnesses the “livingness” of encapsulated microorganisms as an active element in the fabrication process to create adaptive and evolving 3D constructs. This Perspective presents recent advances in 3D bioprinting and discusses current developments at the intersection of 3D bioprinting and ELMs. It highlights opportunities at the interface of these two emerging fields, including understanding the interactions between living and nonliving components of ELMs for bioink design, incorporating synthetic biology into bioprinting workflows, utilizing microbial growth as a postprinting fabrication process, and integrating shape‐morphing materials to enable the 4D printing of ELMs.more » « less
-
The generation of 3D tissue constructs with multiple cell types and matching mechanical properties remains a challenge in cardiac tissue engineering. Recently, 3D bioprinting has become a powerful tool to achieve these goals. Decellularized extracellular matrix (dECM) is a common scaffold material due to providing a native biochemical environment. Unfortunately, dECM’s low mechanical stability prevents usage for bioprinting applications alone. In this study, we developed bioinks composed of decellularized human heart ECM (dhECM) with either gelatin methacryloyl (GelMA) or GelMA-methacrylated hyaluronic acid (MeHA) hydrogels dual crosslinked with UV light and microbial transglutaminase (mTGase). We characterized the bioinks’ mechanical, rheological, swelling, printability, and biocompatibility properties. Composite GelMA–MeHA–dhECM (GME) hydrogels demonstrated improved mechanical properties by an order of magnitude compared to the GelMA–dhECM (GE) hydrogels. All hydrogels were extrudable and compatible with human induced pluripotent stem cell derived cardiomyocytes (iCMs) and human cardiac fibroblasts (hCFs). Tissue-like beating of the printed constructs with striated sarcomeric alpha-actinin and connexin 43 expression was observed. The order of magnitude difference between the elastic modulus of these hydrogel composites offers applications in in vitro modeling of the myocardial infarct boundary. Here, as a proof of concept, we created an infarct boundary region with control over the mechanical properties along with the cellular and macromolecular content through printing iCMs with GE bioink and hCFs with GME bioink.more » « less
An official website of the United States government

