skip to main content

Title: Decision Transformer: Reinforcement Learning via Sequence Modeling
We introduce a framework that abstracts Reinforcement Learning (RL) as a sequence modeling problem. This allows us to draw upon the simplicity and scalability of the Transformer architecture, and associated advances in language modeling such as GPT-x and BERT. In particular, we present Decision Transformer, an architecture that casts the problem of RL as conditional sequence modeling. Unlike prior approaches to RL that fit value functions or compute policy gradients, Decision Transformer simply outputs the optimal actions by leveraging a causally masked Transformer. By conditioning an autoregressive model on the desired return (reward), past states, and actions, our Decision Transformer model can generate future actions that achieve the desired return. Despite its simplicity, Decision Transformer matches or exceeds the performance of state-of-the-art model-free offline RL baselines on Atari, OpenAI Gym, and Key-to-Door tasks.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Advances in neural information processing systems
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Offline reinforcement learning (RL) is a promising approach for training intelligent medical agents to learn treatment policies and assist decision making in many healthcare applications, such as scheduling clinical visits and assigning dosages for patients with chronic conditions. In this paper, we investigate the potential usefulness of Decision Transformer (Chen et al., 2021)–a new offline RL paradign– in medical domains where decision making in continuous time is desired. As Decision Transformer only handles discrete-time (or turn-based) sequential decision making scenarios, we generalize it to Continuous-Time Decision Transformer that not only considers the past clinical measurements and treatments but also the timings of previous visits, and learns to suggest the timings of future visits as well as the treatment plan at each visit. Extensive experiments on synthetic datasets and simulators motivated by real-world medical applications demonstrate that Continuous-Time Decision Transformer is able to outperform competitors and has clinical utility in terms of improving patients’ health and prolonging their survival by learning high-performance policies from logged data generated using policies of different levels of quality. 
    more » « less
  2. Symbolic planning models allow decision-making agents to sequence actions in arbitrary ways to achieve a variety of goals in dynamic domains. However, they are typically handcrafted and tend to require precise formulations that are not robust to human error. Reinforcement learning (RL) approaches do not require such models, and instead learn domain dynamics by exploring the environment and collecting rewards. However, RL approaches tend to require millions of episodes of experience and often learn policies that are not easily transferable to other tasks. In this paper, we address one aspect of the open problem of integrating these approaches: how can decision-making agents resolve discrepancies in their symbolic planning models while attempting to accomplish goals? We propose an integrated framework named SPOTTER that uses RL to augment and support ("spot") a planning agent by discovering new operators needed by the agent to accomplish goals that are initially unreachable for the agent. SPOTTER outperforms pure-RL approaches while also discovering transferable symbolic knowledge and does not require supervision, successful plan traces or any a priori knowledge about the missing planning operator. 
    more » « less
  3. When a model makes a consequential decision, e.g., denying someone a loan, it needs to additionally generate actionable, realistic feedback on what the person can do to favorably change the decision. We cast this problem through the lens of program synthesis, in which our goal is to synthesize an optimal (realistically cheapest or simplest) sequence of actions that if a person executes successfully can change their classification. We present a novel and general approach that combines search-based program synthesis and test-time adversarial attacks to construct action sequences over a domain-specific set of actions. We demonstrate the effectiveness of our approach on a number of deep neural networks. 
    more » « less
  4. Strategic interactions between a group of individuals or organisations can be modelled as games played on networks, where a player’s payoff depends not only on their actions but also on those of their neighbours. Inferring the network structure from observed game outcomes (equilibrium actions) is an important problem with numerous potential applications in economics and social sciences. Existing methods mostly require the knowledge of the utility function associated with the game, which is often unrealistic to obtain in real-world scenarios. We adopt a transformer-like architecture which correctly accounts for the symmetries of the problem and learns a mapping from the equilibrium actions to the network structure of the game without explicit knowledge of the utility function. We test our method on three different types of network games using both synthetic and real-world data, and demonstrate its effectiveness in network structure inference and superior performance over existing methods. 
    more » « less
  5. Reinforcement Learning (RL) agents in the real world must satisfy safety constraints in addition to maximizing a reward objective. Model-based RL algorithms hold promise for reducing unsafe real-world actions: they may synthesize policies that obey all constraints using simulated samples from a learned model. However, imperfect models can result in real-world constraint violations even for actions that are predicted to satisfy all constraints. We propose Conservative and Adaptive Penalty (CAP), a model-based safe RL framework that accounts for potential modeling errors by capturing model uncertainty and adaptively exploiting it to balance the reward and the cost objectives. First, CAP inflates predicted costs using an uncertainty-based penalty. Theoretically, we show that policies that satisfy this conservative cost constraint are guaranteed to also be feasible in the true environment. We further show that this guarantees the safety of all intermediate solutions during RL training. Further, CAP adaptively tunes this penalty during training using true cost feedback from the environment. We evaluate this conservative and adaptive penalty-based approach for model-based safe RL extensively on state and image-based environments. Our results demonstrate substantial gains in sample-efficiency while incurring fewer violations than prior safe RL algorithms. Code is available at: 
    more » « less