skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling
Abstract Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), produced by cyclic GMP-AMP synthase (cGAS), stimulates the production of type I interferons (IFN). Here we show that cGAMP activates DNA damage response (DDR) signaling independently of its canonical IFN pathways. Loss of cGAS dampens DDR signaling induced by genotoxic insults. Mechanistically, cGAS activates DDR in a STING-TBK1-dependent manner, wherein TBK1 stimulates the autophosphorylation of the DDR kinase ATM, with the consequent activation of the CHK2-p53-p21 signal transduction pathway and the induction of G1 cell cycle arrest. Despite its stimulatory activity on ATM, cGAMP suppresses homology-directed repair (HDR) through the inhibition of polyADP-ribosylation (PARylation), in which cGAMP reduces cellular levels of NAD + ; meanwhile, restoring NAD + levels abrogates cGAMP-mediated suppression of PARylation and HDR. Finally, we show that cGAMP also activates DDR signaling in invertebrate species lacking IFN ( Crassostrea virginica and Nematostella vectensis ), suggesting that the genome surveillance mechanism of cGAS predates metazoan interferon-based immunity.  more » « less
Award ID(s):
1832221
NSF-PAR ID:
10300483
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Host cells can recognize cytosolic double-stranded DNAs and endogenous second messengers as cyclic dinucleotides—including c-di-GMP, c-di-AMP, and cGAMP—of invading microbes via the critical and essential innate immune signaling adaptor molecule known as STING. This recognition activates the innate immune system and leads to the production of Type I interferons and proinflammatory cytokines. In this review, we (1) focus on the possible role of bacterial cyclic dinucleotides and the STING/TBK1/IRF3 pathway in the pathogenesis of periodontal disease and the regulation of periodontal immune response, and (2) review and discuss activators and inhibitors of the STING pathway as immune response regulators and their potential utility in the treatment of periodontitis. PubMed/Medline, Scopus, and Web of Science were searched with the terms “STING”, “TBK 1”, “IRF3”, and “cGAS”—alone, or together with “periodontitis”. Current studies produced evidence for using STING-pathway-targeting molecules as part of anticancer therapy, and as vaccine adjuvants against microbial infections; however, the role of the STING/TBK1/IRF3 pathway in periodontal disease pathogenesis is still undiscovered. Understanding the stimulation of the innate immune response by cyclic dinucleotides opens a new approach to host modulation therapies in periodontology. 
    more » « less
  2. Identifying the mechanisms by which bacterial pathogens kill host cells is fundamental to understanding how to control and prevent human and animal disease. In the case of Bacillus thuringiensis (Bt), such knowledge is critical to using the bacterium to kill insect vectors that transmit human and animal disease. For the Cry4B toxin produced by Bt, its capacity to kill Anopheles gambiae, the primary mosquito vector of malaria, is the consequence of a variety of signaling activities. We show here that Cry4B, acting as first messenger, binds specifically to the bitopic cadherin BT-R3G-protein-coupled receptor (GPCR) localized in the midgut of A. gambiae, activating the downstream second messenger cyclic adenosine monophosphate (cAMP). The direct result of the Cry4B–BT-R3binding is the release of αsfrom the heterotrimeric αβγ-G-protein complex and its activation of adenylyl cyclase (AC). The upshot is an increased level of cAMP, which activates protein kinase A (PKA). The functional impact of cAMP–PKA signaling is the stimulation of Na+/K+-ATPase (NKA) which serves as an Na+/K+pump to maintain proper gradients of extracellular Na+and intracellular K+. Increased level of cAMP amplifies NKA and upsets normal ion concentration gradients. NKA, as a scaffolding protein, accelerates the first messenger signal to the nucleus, generating additional BT-R3molecules and promoting their exocytotic trafficking to the cell membrane. Accumulation of BT-R3on the cell surface facilitates recruitment of additional toxin molecules which, in turn, amplify the original signal in a cascade-like manner. This report provides the first evidence of a bacterial toxin using NKA via AC/PKA signaling to execute cell death.

     
    more » « less
  3. BACKGROUND Diverse organisms, from archaea and bacteria to plants and humans, use receptor systems to recognize both pathogens and dangerous self-derived or environmentally derived stimuli. These intricate, well-coordinated immune systems, composed of innate and adaptive components, ensure host survival. In the late 20th century, researchers identified the Toll/interleukin-1/resistance gene (TIR) domain as an evolutionarily conserved component of animal and plant innate immune systems. Today, TIR-domain proteins are known to be broadly distributed across the tree of life. The TIR domain was first recognized as an adaptor for the assembly of macromolecular signaling complexes in mammalian innate immune pathways. Work on axon degeneration in animals—as well as on plant, archaeal, and bacterial immune systems—has uncovered additional enzymatic activities for TIR domains. ADVANCES Mammalian axons initiate a self-destruct program upon injury and during disease that is mediated by the sterile alpha and TIR motif containing 1 (SARM1) protein. The SARM1 TIR domain enzymatically consumes the essential metabolic cofactor nicotinamide adenine dinucleotide (NAD + ) to promote axonal death. Identification of the SARM1 NAD + -consuming enzyme (NADase) revealed that TIR domains can function as enzymes. Given the evolutionary conservation of TIR domains, studies investigated whether the SARM1 TIR NADase was also conserved. Indeed, bacteria, archaea, and plant TIR domains possess NADase activity. In prokaryotes, TIR NADase activity is found in an ancient antiphage immune system. In plants, identification of TIR NADase activity and linkage of TIR enzymatic products to downstream signaling components addressed the question of how nucleotide-binding, leucine-rich repeat (NLR) receptors trigger hypersensitive cell death during an immune response. Studies in plants show that their TIR domains can cleave nucleic acids and possess 2′,3′ cyclic adenosine monophosphate (2′,3′-cAMP) and 2′,3′ cyclic guanosine monophosphate (2′,3′-cGMP) synthetase activity that aids cell death programs in plant innate immunity. Thus, TIR domains constitute an ancient family of enzymes that are activated in immune and cell death pathways. OUTLOOK The discovery of TIR-domain enzyme activities carries implications for innate immunity and neurodegeneration. The identification of the SARM1 NADase defined a drug target for a wide number of neurodegenerative diseases that is being exploited in both preclinical and clinical studies. Hyperactive mutations in the SARM1 NADase have been discovered in amyotrophic lateral sclerosis (ALS) patients. Future work will seek to clarify the contribution of the SARM1 axon degeneration pathway to ALS pathogenesis. NAD + biology influences cellular processes from metabolism to DNA repair to aging. How TIR enzymes influence the NAD + metabolome and its associated pathways in bacteria, archaea, plants, and animals will be an exciting area for upcoming investigation. The discovery of the diversity of TIR enzymatic products is revealing signaling pathways across kingdoms. Discovery of TIR enzymatic function in plants and animals may yet inspire studies of enzymatic functions for Toll-like receptors in animals. We anticipate that cross-kingdom studies of TIR-domain function will guide interventions that will span the tree of life, from treating human neurodegenerative disorders and bacterial infections to preventing plant diseases. Conserved TIR-domain enzymatic activity. TIR-domain proteins from prokaryotes and eukaryotes cleave NAD + into nicotinamide (Nam), ADP-ribose (ADPR), cyclic ADP-ribose (cADPR), isomers of cyclic ADP-ribose (2′ or 3′cADPR), and related molecules [e.g., phosphoribosyl adenosine monophosphate (pRib-AMP)]. Plant TIR domains also possess a nuclease activity, can degrade DNA and RNA, and can function as a 2′,3′-cAMP or 2′,3′-cGMP synthetase. TIR enzymatic activity drives cell death and immune pathways across kingdoms. TIR activity can kill cells directly through NAD + depletion or indirectly using enzymatic products as signal molecules. The representative TIR domain structure shown here is Protein Data Bank ID 6O0Q. EDS1, enhanced disease susceptibility 1; ThsA, Thoeris A. 
    more » « less
  4. Abstract

    Chemoresistance contributes to the majority of deaths in women with ovarian cancer (OC). Altered DNA repair and metabolic signaling is implicated in mediating therapeutic resistance. DNA damage checkpoint kinase 1 (CHK1) integrates cell cycle and DNA repair in replicating cells, and its inhibition causes replication stress, repair deficiency and cell cycle dysregulation. We observed elevated Poly-ADP-ribosylation (PAR) of proteins (PARylation) and subsequent decrease in cellular NAD+levels in OC cells treated with the CHK1 inhibitor prexasertib, indicating activation of NAD+dependent DNA repair enzymes poly-ADP-ribose polymerases (PARP1/2). While multiple PARP inhibitors are in clinical use in treating OC, tumor resistance to these drugs is highly imminent. We reasoned that inhibition of dePARylation by targeting Poly (ADP-ribose) glycohydrolase (PARG) would disrupt metabolic and DNA repair crosstalk to overcome chemoresistance. Although PARG inhibition (PARGi) trapped PARylation of the proteins and activated CHK1, it did not cause any significant OC cell death. However, OC cells deficient in CHK1 were hypersensitive to PARGi, suggesting a role for metabolic and DNA repair crosstalk in protection of OC cells. Correspondingly, OC cells treated with a combination of CHK1 and PARG inhibitors exhibited excessive replication stress-mediated DNA lesions, cell cycle dysregulation, and mitotic catastrophe compared to individual drugs. Interestingly, increased PARylation observed in combination treatment resulted in depletion of NAD+levels. These decreased NAD+levels were also paralleled with reduced aldehyde dehydrogenase (ALDH) activity, which requires NAD+to maintain cancer stem cells. Furthermore, prexasertib and PARGi combinations exhibited synergistic cell death in OC cells, including an isogenic chemoresistant cell line and 3D organoid models of primary patient-derived OC cell lines. Collectively, our data highlight a novel crosstalk between metabolism and DNA repair involving replication stress and NAD+-dependent PARylation, and suggest a novel combination therapy of CHK1 and PARG inhibitors to overcome chemoresistance in OC.

     
    more » « less
  5. Abstract

    During the early stages of limb and fin regeneration in aquatic vertebrates (i.e., fishes and amphibians), blastema undergo transcriptional rewiring of innate immune signaling pathways to promote immune cell recruitment. In mammals, a fundamental component of innate immune signaling is the cytosolic DNA sensing pathway, cGAS‐STING. However, to what extent the cGAS‐STING pathway influences regeneration in aquatic anamniotes is unknown. In jawed vertebrates, negative regulation of cGAS‐STING activity is accomplished by suppressors of cytosolic DNA such as Trex1, Pml, and PML‐like exon 9 (Plex9) exonucleases. Here, we examine the expression of these suppressors of cGAS‐STING, as well as inflammatory genes and cGAS activity during caudal fin and limb regeneration using the spotted gar (Lepisosteus oculatus) and axolotl (Ambystoma mexicanum) model species, and during age‐related senescence in zebrafish (Danio rerio). In the regenerative blastema of wounded gar and axolotl, we observe increased inflammatory gene expression, including interferon genes and interleukins 6 and 8. We also observed a decrease in axolotlTrex1and garpmlexpression during the early phases of wound healing which correlates with a dramatic increase in cGAS activity. In contrast, theplex9.1gene does not change in expression during wound healing in gar. However, we observed decreased expression ofplex9.1in the senescing cardiac tissue of aged zebrafish, where 2′3′‐cGAMP levels are elevated. Finally, we demonstrate a similar pattern ofTrex1,pml, andplex9.1gene regulation across species in response to exogenous 2′3′‐cGAMP. Thus, during the early stages of limb‐fin regeneration, Pml, Trex1, and Plex9.1 exonucleases are downregulated, presumably to allow an evolutionarily ancient cGAS‐STING activity to promote inflammation and the recruitment of immune cells.

     
    more » « less