Barrier coastlines and their associated ecosystems are rapidly changing. Barrier islands/spits, marshes, bays, and coastal forests are all thought to be intricately coupled, yet an understanding of how morphologic change in one part of the system affects the system altogether remains limited. Here we explore how sediment exchange controls the migration of different ecosystem boundaries and ecosystem extent over time using a new coupled model framework that connects components of the entire barrier landscape, from the ocean shoreface to mainland forest. In our experiments, landward barrier migration is the primary cause of back‐barrier marsh loss, while periods of barrier stability can allow for recovery of back‐barrier marsh extent. Although sea‐level rise exerts a dominant control on the extent of most ecosystems, we unexpectedly find that, for undeveloped barriers, bay extent is largely insensitive to sea‐level rise because increased landward barrier migration (bay narrowing) offsets increased marsh edge erosion (bay widening).
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Understanding and attributing changes to water quality is essential to the study and management of coastal ecosystems and the ecological functions they sustain (e.g., primary productivity, predation, and submerged aquatic vegetation growth). However, describing patterns of water clarity—a key aspect of water quality—over meaningful scales in space and time is challenged by high spatial and temporal variability due to natural and anthropogenic processes. Regionally tuned satellite algorithms can provide a more complete understanding of coastal water clarity changes and drivers. In this study, we used open‐access satellite data and low‐cost in situ methods to improve estimates of water clarity in an optically complex coastal water body. Specifically, we created a remote sensing water clarity product by compiling Landsat‐8 and Sentinel‐2 reflectance data with long‐term Secchi depth measurements at 12 sites over 8 years in a shallow turbid coastal lagoon system in Virginia, USA. Our satellite‐based model explained ∼33% of the variation in in situ water clarity. Our approach increases the spatiotemporal coverage of in situ water clarity data and improves estimates from bio‐optical algorithms that overpredicted water clarity. This could lead to a better understanding of water clarity changes and drivers to better predict how water quality will change in the future.
-
Abstract This paper presents a new empirical model, called the cumulative storm impact index (CSII), that quantifies the impact of coastal storms on sandy beaches. The new model utilizes user‐defined storm data to incorporate both individual storm magnitude and the cumulative effect of successive storms into an index, which is a proxy for beach erosion at a given time. Applying this model to long‐term water‐level data from a Virginia tide gauge showed that the greatest storm impact resulted not from the larger individual storms, such as the Ash Wednesday nor'easter of 1962, the “Perfect Storm” of 1991, or Hurricane Sandy of 2012, but rather from especially stormy winter seasons that occurred during the twenty‐first century. Additionally, the CSII model uncovered a trend—not detectable by single storm impact analyses—toward greater storm impacts, which began c. 1980 and continued to the present day. Finally, comparative analyses using wave power as a storm index shows CSII can capture decadal or seasonal scale storminess. We expect this model to have utility in many areas of the coastal sciences and engineering, including developing holistic response models, quantifying erosion potential at other locations, and managing coastal ecosystems.
-
Abstract Wetlands in the Mississippi River Delta are rapidly degrading. Sea level rise and low sediment supply are widely recognized as the two main factors contributing to land‐to‐water conversion. To determine what marsh areas are more resilient, it is fundamental to identify the drivers that regulate marsh accretion and degradation. In this study, a combination of field data and aerial images is used to determine these drivers in Terrebonne Bay, Louisiana, USA. We find that accretion and degradation patterns depend on whether the marsh is located inland in a sheltered area or facing open water. In the first case, the distance to the nearby channel is important, because during flooding of the marsh platform more sediment is deposited in the proximity of channel banks. The accretion rates of marshes facing open water are high and correlate to fetch, a proxy for the ability of waves to resuspend bottom sediment. These areas are more resilient to sea level rise, but waves are also the main mechanism of degradation, as these marshes tend to degrade by edge erosion. Consequently, we propose a bimodal evolution trajectory of the marshes in Terrebonne Bay: marshes close to the bay and facing open water accrete rapidly but are affected by lateral erosion due to waves, whereas sheltered marshes accrete slowly and degrade in large swathes due to insufficient sediment supply.
-
Abstract Coastal marshes are globally important, carbon dense ecosystems simultaneously maintained and threatened by sea‐level rise. Warming temperatures may increase wetland plant productivity and organic matter accumulation, but temperature‐modulated feedbacks between productivity and decomposition make it difficult to assess how wetlands and their thick, organic‐rich soils will respond to climate warming. Here, we actively increased aboveground plant‐surface and belowground soil temperatures in two marsh plant communities, and found that a moderate amount of warming (1.7°C above ambient temperatures) consistently maximized root growth, marsh elevation gain, and belowground carbon accumulation. Marsh elevation loss observed at higher temperatures was associated with increased carbon mineralization and increased microtopographic heterogeneity, a potential early warning signal of marsh drowning. Maximized elevation and belowground carbon accumulation for moderate warming scenarios uniquely suggest linkages between metabolic theory of individuals and landscape‐scale ecosystem resilience and function, but our work indicates nonpermanent benefits as global temperatures continue to rise.
-
Abstract Coastal wetlands are nourished by rivers and periodical tidal flows through complex, interconnected channels. However, in hydrodynamic models, channel dimensions with respect to model grid size and uncertainties in topography preclude the correct propagation of tidal and riverine signals. It is therefore crucial to enhance channel geomorphic connectivity and simplify sub‐channel features based on remotely sensed networks for practical computational applications. Here, we utilize channel networks derived from diverse remote sensing imagery as a baseline to build a ∼10 m resolution hydrodynamic model that covers the Wax Lake Delta and adjacent wetlands (∼360 km2) in coastal Louisiana, USA. In this richly gauged system, intensive calibrations are conducted with 18 synchronous field‐observations of water levels taken in 2016, and discharge data taken in 2021. We modify channel geometry, targeting realism in channel connectivity. The results show that a minimum channel depth of 2 m and a width of four grid elements (approximatively 40 m) are required to enable a realistic tidal propagation in wetland channels. The optimal depth for tidal propagation can be determined by a simplified cost function method that evaluates the competition between flow travel time and alteration of the volume of the channels. The integration of high spatial‐resolution models and remote sensing imagery provides a general framework to improve models performance in salt marshes, mangroves, deltaic wetlands, and tidal flats.
-
Abstract Shrubs are common – and presently expanding – across coastal barrier interiors (the land between the foredune system and back‐barrier bay), and have the potential to influence barrier morphodynamics by obstructing cross‐shore overwash flow. The ecological and geomorphological consequences of ecomorphodynamic couplings of the barrier interior, however, remain largely unexplored. In this contribution, we add an ecological module of shrub expansion and mortality to a spatially‐explicit exploratory model of barrier evolution (Barrier3D) to explore the effects of shrub‐barrier feedbacks. In our model simulations, we find that the presence of shrubs significantly alters barrier morphology and behavior. Over timescales of decades to centuries, barriers with shrubs (relative to those without) tend to be narrower, migrate landward more slowly, and have a greater proportion of subaerial volume distributed toward the ocean‐side of the barrier. Shrubs also tend to increase the likelihood of discontinuous barrier retreat, a behavior in which a barrier oscillates between periods of transgression and relative immobility, because shrubs induce prolonged periods of barrier immobility by obstructing overwash flow. However, shrubs can increase barrier vulnerability to drowning by preventing periods of transgression needed to maintain barrier elevation relative to rising sea levels. Additionally, physical barrier processes influence shrub expansion in our simulations; we find that greater dune erosion and overwash disturbance tends to slow the rate of shrub expansion across the barrier interior. Complementing recent observational studies of barrier islands in Virginia, USA, our results suggest that interior ecology can be a key component of barrier evolution on annual to centurial timescales.
-
Abstract The impacts of climate change on ecosystems are manifested in how organisms respond to episodic and continuous stressors. The conversion of coastal forests to salt marshes represents a prominent example of ecosystem state change, driven by the continuous stress of sea‐level rise (press), and episodic storms (pulse). Here, we measured the rooting dimension and fall direction of 143 windthrown eastern red cedar (
Juniperus virginiana ) trees in a rapidly retreating coastal forest in Chesapeake Bay (USA). We found that tree roots were distributed asymmetrically away from the leading edge of soil salinization and towards freshwater sources. The length, number, and circumference of roots were consistently higher in the upslope direction than downslope direction, suggesting an active morphological adaptation to sea‐level rise and salinity stress. Windthrown trees consistently fell in the upslope direction regardless of aspect and prevailing wind direction, suggesting that asymmetric rooting destabilized standing trees, and reduced their ability to withstand high winds. Together, these observations help explain curious observations of coastal forest resilience, and highlight an interesting nonadditive response to climate change, where adaptation to press stressors increases vulnerability to pulse stressors. -
Abstract Synchronous dynamics (fluctuations that occur in unison) are universal phenomena with widespread implications for ecological stability. Synchronous dynamics can amplify the destabilizing effect of environmental variability on ecosystem functions such as productivity, whereas the inverse, compensatory dynamics, can stabilize function. Here we combine simulation and empirical analyses to elucidate mechanisms that underlie patterns of synchronous versus compensatory dynamics. In both simulated and empirical communities, we show that synchronous and compensatory dynamics are not mutually exclusive but instead can vary by timescale. Our simulations identify multiple mechanisms that can generate timescale‐specific patterns, including different environmental drivers, diverse life histories, dispersal, and non‐stationary dynamics. We find that traditional metrics for quantifying synchronous dynamics are often biased toward long‐term drivers and may miss the importance of short‐term drivers. Our findings indicate key mechanisms to consider when assessing synchronous versus compensatory dynamics and our approach provides a pathway for disentangling these dynamics in natural systems.
-
Abstract Barrier islands and spits tend to migrate landward in response to sea‐level rise through the storm‐driven process of overwash, but overwash flux depends on the height of the frontal dunes. Here, we explore this fundamental linkage between dune dynamics and barrier migration using the new model Barrier3D. Our experiments demonstrate that discontinuous barrier retreat is a prevalent behavior that can arise directly from the bistability of foredune height, occurring most likely when the storm return period and characteristic time scale of dune growth are of similar magnitudes. Under conditions of greater storm intensity, discontinuous retreat becomes the dominant behavior of barriers that were previously stable. Alternatively, higher rates of sea‐level rise decrease the overall likelihood of discontinuous retreat in favor of continuous transgression. We find that internal dune dynamics, while previously neglected in exploratory barrier modeling, are an essential component of barrier evolution on time scales relevant to coastal management.