Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2023
-
Oysters are described as estuarine ecosystem engineers because their reef structures provide habitat for a variety of flora and fauna, alter hydrodynamics, and affect sediment composition. To what spatial extent oyster reefs influence surrounding infauna and sediment composition remains uncertain. We sampled sediment and infauna across 8 intertidal mudflats at distances up to 100 m from oyster reefs within coastal bays of Virginia, USA, to determine if distance from reefs and physical site characteristics (reef elevation, local hydrodynamics, and oyster cover) explain the spatial distributions of infauna and sediment. Total infauna density increased with distance away from reefs; however, themore »Free, publicly-accessible full text available March 24, 2023
-
Free, publicly-accessible full text available March 1, 2023
-
Habitat suitability models have been used for decades to develop spatially explicit predictions of landscape capacity to support populations of target species. As high-resolution remote sensing data are increasingly included in habitat suitability models that inform spatial conservation and restoration decisions, it is essential to validate model predictions with independent, quantitative data collected over sustained time frames. Here, we used data collected from 12 reefs over a 14 yr sampling period to validate a recently developed physical habitat suitability model for intertidal oyster reefs in coastal Virginia, USA. The model used intertidal elevation, water residence time, and fetch to predictmore »Free, publicly-accessible full text available February 3, 2023
-
Aquatic eddy covariance (AEC) is increasingly being used to study benthic oxygen (O 2 ) flux dynamics, organic carbon cycling, and ecosystem health in marine and freshwater environments. Because it is a noninvasive technique, has a high temporal resolution (∼15 min), and integrates over a large area of the seafloor (typically 10–100 m 2 ), it has provided new insights on the functioning of aquatic ecosystems under naturally varying in situ conditions and has given us more accurate assessments of their metabolism. In this review, we summarize biogeochemical, ecological, and biological insightsgained from AEC studies of marine ecosystems. A generalmore »Free, publicly-accessible full text available January 3, 2023
-
Free, publicly-accessible full text available January 1, 2023
-
Free, publicly-accessible full text available January 1, 2023
-
Abstract The spatial pattern of vegetation patchiness may follow universal characteristic rules when the system is close to critical transitions between alternative states, which improves the anticipation of ecosystem-level state changes which are currently difficult to detect in real systems. However, the spatial patterning of vegetation patches in temperature-driven ecosystems have not been investigated yet. Here, using high-resolution imagery from 1972 to 2013 and a stochastic cellular automata model, we show that in a North American coastal ecosystem where woody plant encroachment has been happening, the size distribution of woody patches follows a power law when the system approaches amore »Free, publicly-accessible full text available December 1, 2022
-
Abstract Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), produced by cyclic GMP-AMP synthase (cGAS), stimulates the production of type I interferons (IFN). Here we show that cGAMP activates DNA damage response (DDR) signaling independently of its canonical IFN pathways. Loss of cGAS dampens DDR signaling induced by genotoxic insults. Mechanistically, cGAS activates DDR in a STING-TBK1-dependent manner, wherein TBK1 stimulates the autophosphorylation of the DDR kinase ATM, with the consequent activation of the CHK2-p53-p21 signal transduction pathway and the induction of G1 cell cycle arrest. Despite its stimulatory activity on ATM, cGAMP suppresses homology-directed repair (HDR) through the inhibition of polyADP-ribosylation (PARylation),more »Free, publicly-accessible full text available December 1, 2022
-
Abstract Shorelines and their ecosystems are endangered by sea-level rise. Nature-based coastal protection is becoming a global strategy to enhance coastal resilience through the cost-effective creation, restoration and sustainable use of coastal wetlands. However, the resilience to sea-level rise of coastal wetlands created under Nature-based Solution has been assessed largely on a regional scale. Here we assess, using a meta-analysis, the difference in accretion, elevation, and sediment deposition rates between natural and restored coastal wetlands across the world. Our results show that restored coastal wetlands can trap more sediment and that the effectiveness of these restoration projects is primarily drivenmore »Free, publicly-accessible full text available December 1, 2022