skip to main content

Title: Molecular origins of bulk viscosity in liquid water
The rapid equilibrium fluctuations of water molecules are intimately connected to the rheological response; molecular motions resetting the local structure and stresses seen as flow and volume changes. In the case of water or hydrogen bonding liquids generally, the relationship is a non-trivial consideration due to strong directional interactions complicating theoretical models and necessitating clear observation of the timescale and nautre of the associated equilibrium motions. Recent work has illustrated a coincidence of timescales for short range sub-picosecond motions and the implied timescale for the shear viscosity response in liquid water. Here, neutron and light scattering methods are used to experimentally illustrate the timescale of bulk viscosity and provide a description of the associated molecular relaxation. Brillouin scattering has been used to establish the timescale of bulk viscosity; and borrowing the Maxwell approach, the ratio of the bulk viscosity, ζ , to the bulk modulus, K , yields a relaxation time, τ B , which emerges on the order of 1–2 ps in the 280 K to 303 K temperature range. Inelastic neutron scattering is subsequently used to describe the motions of water and heavy water at the molecular scale, providing both coherent and incoherent scattering data. A rotational (alternatively more » described as localized) motion of water protons on the 1–2 ps timescale is apparent in the incoherent scattering spectra of water, while the coherent spectra from D 2 O on the length scale of the first sharp diffraction peak, describing the microscopic density fluctuations of water, confirms the relaxation of water structure at a comparable timescale of 1–2 ps. The coincidence of these three timescales provides a mechanistic description of the bulk viscous response, with the local structure resetting due to rotational/localized motions on the order of 1–2 ps, approximately three times slower than the relaxations associated with shear viscosity. In this way we show that the shear viscous response is most closely associated with changes in water network connectivity, while the bulk viscous response is associated with local density fluctuations. « less
; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Physical Chemistry Chemical Physics
Page Range or eLocation-ID:
9494 to 9502
Sponsoring Org:
National Science Foundation
More Like this
  1. Material properties of the genome are critical for proper cellular function – they directly affect timescales and length scales of DNA transactions such as transcription, replication and DNA repair, which in turn impact all cellular processes via the central dogma of molecular biology. Hence, elucidating the genome's rheology in vivo may help reveal physical principles underlying the genome's organization and function. Here, we present a novel noninvasive approach to study the genome's rheology and its response to mechanical stress in form of nuclear injection in live human cells. Specifically, we use Displacement Correlation Spectroscopy to map nucleus-wide genomic motions pre/post injection, during which we deposit rheological probes inside the cell nucleus. While the genomic motions inform on the bulk rheology of the genome pre/post injection, the probe's motion informs on the local rheology of its surroundings. Our results reveal that mechanical stress of injection leads to local as well as nucleus-wide changes in the genome's compaction, dynamics and rheology. We find that the genome pre-injection exhibits subdiffusive motions, which are coherent over several micrometers. In contrast, genomic motions post-injection become faster and uncorrelated, moreover, the genome becomes less compact and more viscous across the entire nucleus. In addition, we usemore »the injected particles as rheological probes and find the genome to condense locally around them, mounting a local elastic response. Taken together, our results show that mechanical stress alters both dynamics and material properties of the genome. These changes are consistent with those observed upon DNA damage, suggesting that the genome experiences similar effects during the injection process.« less
  2. We present one-dimensional (1-D) imaging of rotation-vibration non-equilibrium measured by two-beam pure rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS). Simultaneous measurements of the spatial distribution of molecular rotation-vibration non-equilibrium are critical for understanding molecular energy transfer in low temperature plasmas and hypersonic flows. However, non-equilibrium CARS thermometry until now was limited to point measurements. The red shift of rotational energy levels by vibrational excitation was used to determine the rotational and vibrational temperatures from 1-D images of the pure rotational spectrum. Vibrational temperatures up to 5500 K were detected in aCH4/N2nanosecond-pulsed pin-to-pin plasma within 2 mm near the cathode. This approach enables study of non-equilibrium systems with 40 µm spatial resolution.

  3. Abstract

    Both the core collapse of rotating massive stars, and the coalescence of neutron star (NS) binaries result in the formation of a hot, differentially rotating NS remnant. The timescales over which differential rotation is removed by internal angular-momentum transport processes (viscosity) have key implications for the remnant’s long-term stability and the NS equation of state (EOS). Guided by a nonrotating model of a cooling proto-NS, we estimate the dominant sources of viscosity using an externally imposed angular-velocity profile Ω(r). Although the magneto-rotational instability provides the dominant source of effective viscosity at large radii, convection and/or the Tayler–Spruit dynamo dominate in the core of merger remnants wheredΩ/dr≥ 0. Furthermore, the viscous timescale in the remnant core is sufficiently short that solid-body rotation will be enforced faster than matter is accreted from rotationally supported outer layers. Guided by these results, we develop a toy model for how the merger remnant core grows in mass and angular momentum due to accretion. We find that merger remnants with sufficiently massive and slowly rotating initial cores may collapse to black holes via envelope accretion, even when the total remnant mass is less than the usually considered threshold ≈1.2MTOVfor forming a stable solid-body rotating NSmore »remnant (whereMTOVis the maximum nonrotating NS mass supported by the EOS). This qualitatively new picture of the post-merger remnant evolution and stability criterion has important implications for the expected electromagnetic counterparts from binary NS mergers and for multimessenger constraints on the NS EOS.

    « less
  4. Abstract Thermodynamical and dynamical aspects of the climate system response to an-thropogenic forcing are often considered in two distinct frameworks: The former in the context of the forcing-feedback framework; the latter in the context of eddy-mean flow feedbacks and large-scale thermodynamic constraints. Here we use experiments with the dynamical core of a general circulation model (GCM) to provide insights into the relationships between these two frameworks. We first demonstrate that the climate feedbacks and climate sensitivity in a dynamical core model are determined by its prescribed thermal relaxation timescales. We then perform two experiments: One that explores the relationships between the thermal relaxation timescale and the climatological circulation; and a second that explores the relationships between the thermal relaxation timescale and the circulation response to a global warming-like forcing perturbation. The results indicate that shorter relaxation timescales (i.e., lower climate sensitivities in the context of a dynamical core model) are associated with 1) a more vigorous large-scale circulation, including increased thermal diffusivity and stronger and more poleward storm tracks and eddy-driven jets and 2) a weaker poleward displacement of the storm tracks and eddy-driven jets in response to the global warming-like forcing perturbation. Interestingly, the circulation response to the forcingmore »perturbation effectively disappears when the thermal relaxation timescales are spatially uniform, suggesting that the circulation response to homogeneous forcing requires spatial inhomogeneities in the local feedback parameter. Implications for anticipating the circulation response to global warming and thermodynamic constraints on the circulation are discussed.« less
  5. SUMMARY Tectonic plate motions predominantly result from a balance between the potential energy change of the subducting slab and viscous dissipation in the mantle, bending lithosphere and slab–upper plate interface. A wide range of observations from active subduction zones and exhumed rocks suggest that subduction interface shear zone rheology is sensitive to the composition of subducting crustal material—for example, sediments versus mafic igneous oceanic crust. Here we use 2-D numerical models of dynamically consistent subduction to systematically investigate how subduction interface viscosity influences large-scale subduction kinematics and dynamics. Our model consists of an oceanic slab subducting beneath an overriding continental plate. The slab includes an oceanic crustal/weak layer that controls the rheology of the interface. We implement a range of slab and interface strengths and explore how the kinematics respond for an initial upper mantle slab stage, and subsequent quasi-steady-state ponding near a viscosity jump at the 660-km-discontinuity. If material properties are suitably averaged, our results confirm the effect of interface strength on plate motions as based on simplified viscous dissipation analysis: a ∼2 order of magnitude increase in interface viscosity can decrease convergence speeds by ∼1 order of magnitude. However, the full dynamic solutions show a range of interestingmore »behaviour including an interplay between interface strength and overriding plate topography and an end-member weak interface-weak slab case that results in slab break-off/tearing. Additionally, for models with a spatially limited, weak sediment strip embedded in regular interface material, as might be expected for the subduction of different types of oceanic materials through Earth’s history, the transient response of enhanced rollback and subduction velocity is different for strong and weak slabs. Our work substantiates earlier suggestions as to the importance of the plate interface, and expands the range of quantifiable links between plate reorganizations, the nature of the incoming and overriding plate and the potential geological record.« less