skip to main content


Title: A Common Base Mode of Asian Summer Monsoon Variability across Timescales
Abstract The summer intraseasonal oscillation (ISO) is characterized by a northward-moving rainband in the Indo–western Pacific warm pool region. The physical origin of the ISO is not fully understood, as it is masked by strong interaction of convection and circulation. This study examines intraseasonal to interannual variability during June–August over the Indo–western Pacific warm pool region. The results show that the tropical northwest Pacific anomalous anticyclone (NWP-AAC) is a fundamental mode on both intraseasonal and interannual time scales, destabilized by the monsoon mean state, specifically through barotropic energy conversion and convective feedback in the low-level confluence between the monsoon westerlies and easterly trade winds. On the interannual time scale, the NWP-AAC shows a biennial tendency, reversing phase from the summer of El Niño to the summer that follows; the AAC in post–El Niño summer is excited indirectly through sea surface temperature anomalies in the Indo–NWP. On the intraseasonal time scale, the column-integrated moisture advection causes the NWP-AAC-related convection to propagate northward. Our results provide a unifying view of multiscale Asian summer monsoon variability, with important implications for subseasonal to seasonal prediction.  more » « less
Award ID(s):
1637450
NSF-PAR ID:
10300573
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Climate
Volume:
34
Issue:
18
ISSN:
0894-8755
Page Range / eLocation ID:
7359 to 7371
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Summer atmospheric interannual variability in the Indo–northwestern Pacific (NWP) is coupled with tropical sea surface temperature (SST) variability. This study investigates the importance and origin of atmospheric internal variability in the Indo-NWP region. Using the reanalysis and the 30-member atmospheric model simulation, two SST-related interannual modes are identified in the Indo-NWP region during boreal summer with the month-reliant empirical orthogonal function analysis. The first mode is related to concurrent El Niño–Southern Oscillation originating from the eastern equatorial Pacific whereas the second mode features an anomalous anticyclone (AAC) in post–El Niño summers over the NWP region, known as the Indo-western Pacific Ocean capacitor. The SST-induced modes show temporal persistence from June to August. The residual variability is the focus of this study. The dominant mode of the residual variability displays an AAC structure over the NWP but little month-to-month persistence, indicative of atmospheric internal dynamics unrelated to SST forcing. Further investigation suggests the monthly internal AAC arises from the summer intraseasonal oscillation (ISO). The broad band of ISO yields nonzero monthly means that project strongly onto the AAC pattern. Finally, the anomalies of rainfall and low-level circulation in summer 2016 are investigated. The reversal of the low-level circulation pattern from an AAC in July to an anomalous cyclone over the NWP in August 2016 is due to the ISO-induced internal variability. 
    more » « less
  2. Abstract

    El Niño–Southern Oscillation (ENSO) is an important but not the only source of interannual variability over the Indo–western Pacific. Non-ENSO forced variability in the region has received recent attention because of the implications for rainy-season prediction. Using a 35-member CESM1 Large Ensemble (CESM-LE) and 30 CMIP6 models, this study shows that the ensemble means project intensified interannual variability for precipitation, low-level winds, and sea level pressure under global warming, associated with the enhanced large-scale anomalous anticyclone (AAC) over the tropical northwestern (NW) Pacific after the ENSO signal is removed. A decomposition based on the column water vapor budget reveals that enhanced precipitation variability is due to the increased background specific humidity. The resultant anomalous diabatic heating intensifies the AAC, which further strengthens the precipitation anomalies. Over the tropical NW Pacific, the wind-induced evaporative cooling on the southeastern flank of the AAC is countered by the increased shortwave radiation due to the strengthened precipitation reduction. Tropospheric temperature anomalies in the ensemble means show no significant change, suggesting no apparent change of the interbasin positive feedback between the AAC and northern Indian Ocean SST. Intermodel analysis based on CMIP6 reveals that models with a larger increase in ENSO-unrelated precipitation variability over the NW Pacific are associated with stronger background warming in the eastern equatorial Pacific, due to the modulated Walker and Hadley circulations.

     
    more » « less
  3. Abstract

    Two of the most important hydroclimatic features of the Indian summer monsoon (ISM) rainfall are its onset/demise and intraseasonal oscillations (ISOs) manifested by the active‐break cycles. In this study, we aim to understand the quantitative association between these two phenomena. An objective definition of local onset/demise of the ISM based on more than a century‐long India Meteorological Department rain gauge observation is taken into consideration. Using multichannel singular spectrum analysis we isolate northward‐propagating low‐frequency (20–60 days; LF‐ISO) and northwestward propagating high‐frequency (10–20 days; HF‐ISO) ISOs from the daily ISM rainfall. Our results suggest that a large number of local onset (59%) and demise (62%) events occur during positive developing phases and positive decaying phases of two ISOs, respectively, with phase locking between LF‐ISO and HF‐ISO being particularly important. Local onset is largely associated with favorable phases of ISOs across India except for LF‐ISO over eastern India and HF‐ISO over western Ghats and central India (CI). We find that local demise is more coherent with the ISO phases, especially with HF‐ISO across the domain. We performed a case study to understand large‐scale association with the onset of the ISM over CI. In 44 of total 58 cases (1948–2005), when CI onset occurred during favorable LF‐ISO or HF‐ISO phase, they are either linked with a northward propagation of convection from the equator in LF‐ISO time scale (28 cases) or westward propagating structures from the western Pacific in HF‐ISO time scale (27 cases).

     
    more » « less
  4. Abstract Through the diagnosis of 29 Atmospheric Model Inter-comparison Project (AMIP) experiments from the CMIP5 inter-comparison project, we investigate the impact of the mean state on simulated western North Pacific anomalous anticyclone (WNPAC) during El Niño decaying summer. The result indicates that the inter-model difference of the JJA mean precipitation in the Indo-western Pacific warm pool is responsible for the difference of the WNPAC. During the decaying summer of an Eastern Pacific (EP) type El Niño, a model that simulates excessive mean rainfall over the western North Pacific (WNP) reproduces a stronger WNPAC response, through an enhanced local convection-circulation-moisture feedback. The intensity of the simulated WNPAC during the decay summer of a Central Pacific (CP) type El Niño, on the other hand, depends on the mean precipitation over the tropical Indian Ocean. The distinctive WNPAC-mean precipitation relationships between the EP and CP El Niño result from different anomalous SST patterns in the WNP. While the local SST anomaly plays an active role in maintaining the WNPAC during the EP El Niño, it plays a passive role during the CP El Niño. As a result, only the mean-state precipitation/moisture field in the tropical Indian Ocean modulates the circulation anomaly in the WNP in the latter case. 
    more » « less
  5. Intraseasonal variability of rainfall over the Indian subcontinent (IS) and the Tibetan Plateau (TP) has been discussed widely but often separately. In this study, we investigate the covariability of rainfall across the IS and the TP on intraseasonal time scales and its impact on interannual variability of regional rainfall. The most dominant mode of rainfall intraseasonal variability across the region features a dipole pattern with significant out-of-phase rainfall anomalies between the southeastern TP and the central and northern IS. This dipole rainfall pattern is associated with intraseasonal oscillations (ISOs) of 10–20 days and 30–60 days, especially the latter. An active spell of rainfall in the central and northern IS (southeastern TP) is associated with the strengthening (northward shift) of water vapor transport of the Indian summer monsoon, resulting in more water vapor entering into the central and northern IS (southeastern TP) and thus more rainfall. The 10–20-day ISO of the dipole rainfall pattern is caused by the 10–20-day atmospheric ISO in both the tropics and the extratropics, whereas the 30–60-day ISO of the dipole rainfall pattern is only associated with atmospheric ISO in the tropics. The dipole rainfall pattern resembles the most dominant mode of interannual variability of July–August mean rainfall. The 30–60-day ISO of the dipole rainfall pattern has an important contribution to the dipole pattern of July–August mean rainfall anomalies on an interannual time scale due to the different frequencies of occurrence of the active and break phases.

     
    more » « less