Abstract The Madden Julian Oscillation (MJO) consists of a tropical convective region that propagates eastward through the Indo‐Pacific warm pool. Decadal climate variability alters sea surface temperature patterns, affecting the MJO's basic state. This investigation examines the impact of projected SST and moisture pattern changes over the 21st Century on MJO precipitation and zonal wind amplitude changes in 80 members of the Community Earth System Model 2 Large Ensemble in the SSP370 radiative forcing scenario, each with its unique representation of decadal variability. Ensemble members with strongest MJO precipitation change in a given 20‐year period have a more El Niño‐like east Pacific warming pattern. MJO amplitude increases for east Pacific warming because of a strengthened meridional moisture gradient that supports MJO eastward propagation. A stronger vertical moisture gradient also exists for ensemble members with preferential east Pacific warming, which supports a stronger MJO under moisture mode theory.
more »
« less
Tropical Intraseasonal Variability as a Leading Moisture Dynamic Mode of the Warm-Pool Background State
Abstract Tropical intraseasonal variability (ISV) is dominated by the Madden–Julian oscillation (MJO), and its spatiotemporal characteristics vary with the Indo-Pacific warm-pool background on seasonal and longer time scales. Previous works have suggested ISV dynamics in various frameworks, whereas a unifying view remains challenging. Motivated by the recent advance in moisture mode theory, we revisit the ISV as a leading moisture mode modulated by varying background states derived from a reanalysis, using a moist linear baroclinic model (mLBM) improved with a simple convective scheme relating convective precipitation to tropospheric and boundary layer moisture anomalies and simple cloud-radiative feedback representations. Under a boreal winter background state, this mLBM yielded a large-scale but local eastward-propagating mode with a phase speed of 3–5 m s−1over the warm-pool region, resembling the MJO. Background lower-tropospheric winds and thermodynamic fields are important in determining the growth rate and periodicity of the leading mode, whose stability depends on cloud-radiative feedback and background state variations. We further demonstrate why the MJO is locally contained in the Indo-Pacific warm-pool region. The local thermal/moisture condition and Walker circulation greatly enhance its instability, but outside this region, this mode is heavily damped. Thus, the expansion/contraction of this warm-pool condition may enhance/reduce its instability and expand/reduce its domain of activity. Prescribing El Niño background causes eastward displacement of the wintertime ISV activity, reminiscent of the observed MJO modulations by El Niño. Under a summer background state, the eastward-propagating leading mode resembles the boreal summer ISV but is biased, requiring further model improvements.
more »
« less
- Award ID(s):
- 2219257
- PAR ID:
- 10559481
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 38
- Issue:
- 1
- ISSN:
- 0894-8755
- Format(s):
- Medium: X Size: p. 235-262
- Size(s):
- p. 235-262
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract The summer intraseasonal oscillation (ISO) is characterized by a northward-moving rainband in the Indo–western Pacific warm pool region. The physical origin of the ISO is not fully understood, as it is masked by strong interaction of convection and circulation. This study examines intraseasonal to interannual variability during June–August over the Indo–western Pacific warm pool region. The results show that the tropical northwest Pacific anomalous anticyclone (NWP-AAC) is a fundamental mode on both intraseasonal and interannual time scales, destabilized by the monsoon mean state, specifically through barotropic energy conversion and convective feedback in the low-level confluence between the monsoon westerlies and easterly trade winds. On the interannual time scale, the NWP-AAC shows a biennial tendency, reversing phase from the summer of El Niño to the summer that follows; the AAC in post–El Niño summer is excited indirectly through sea surface temperature anomalies in the Indo–NWP. On the intraseasonal time scale, the column-integrated moisture advection causes the NWP-AAC-related convection to propagate northward. Our results provide a unifying view of multiscale Asian summer monsoon variability, with important implications for subseasonal to seasonal prediction.more » « less
-
Abstract Deep convection in the Indo-Pacific warm pool is vital in driving global atmospheric overturning circulations. Year-to-year variations in the strength and location of warm pool precipitation can lead to significant local and downstream hydroclimatic impacts, including floods and droughts. While the El Niño-Southern Oscillation (ENSO) is recognized as a key factor in modulating interannual precipitation variations in this region, atmospheric internal variability is often as important. Here, through targeted atmospheric model experiments, we identify an intrinsic low-frequency atmospheric mode in the warm pool region during the austral summer, and show that its impact on seasonal rainfall is comparable to ENSO. This mode resembles the horizontal structure of the Madden-Julian Oscillation (MJO), and may play a role in initiating ENSO as stochastic forcing. We show that this mode is not merely an episodic manifestation of MJO events but primarily arises from barotropic energy conversion aided by positive feedback between convection and circulation.more » « less
-
null (Ed.)Abstract The diversity of the Madden-Julian Oscillation (MJO) in terms of its maximum intensity, zonal extent and phase speed was explored using a cluster analysis method. The zonal extent is found to be significantly correlated to the phase speed. A longer zonal extent is often associated with a faster phase speed. The diversities of zonal extent and speed are connected with distinctive interannual sea surface temperature anomaly (SSTA) distributions and associated moisture and circulation patterns over the equatorial Pacific. An El Niño–like background SSTA leads to enhanced precipitation over the central Pacific, allowing a stronger vertically overturning circulation to the east of the MJO. This promotes both a larger east-west asymmetry of column-integrated moist static energy (MSE) tendency and a greater boundary-layer moisture leading, serving as potential causes of the faster phase speed. The El Niño–like SSTA also favors the MJOs intruding further into the Pacific, causing a larger zonal extent. The intensity diversity is associated with the interannual SSTA over the Maritime Continent and background moisture condition over the tropical Indian Ocean. An observed warm SSTA over the Maritime Continent excites a local Walker cell with a subsidence over the Indian Ocean, which could decrease the background moisture, weakening the MJO intensity. The intensity difference between strong and weak events would be amplified due to distinct intensity growth speed. The faster intensity growth of a strong MJO is attributed to a greater longwave radiative heating and a greater surface latent heat flux, as both of which contribute to a greater total time change rate of the column-integrated MSE.more » « less
-
Abstract Through the diagnosis of 29 Atmospheric Model Inter-comparison Project (AMIP) experiments from the CMIP5 inter-comparison project, we investigate the impact of the mean state on simulated western North Pacific anomalous anticyclone (WNPAC) during El Niño decaying summer. The result indicates that the inter-model difference of the JJA mean precipitation in the Indo-western Pacific warm pool is responsible for the difference of the WNPAC. During the decaying summer of an Eastern Pacific (EP) type El Niño, a model that simulates excessive mean rainfall over the western North Pacific (WNP) reproduces a stronger WNPAC response, through an enhanced local convection-circulation-moisture feedback. The intensity of the simulated WNPAC during the decay summer of a Central Pacific (CP) type El Niño, on the other hand, depends on the mean precipitation over the tropical Indian Ocean. The distinctive WNPAC-mean precipitation relationships between the EP and CP El Niño result from different anomalous SST patterns in the WNP. While the local SST anomaly plays an active role in maintaining the WNPAC during the EP El Niño, it plays a passive role during the CP El Niño. As a result, only the mean-state precipitation/moisture field in the tropical Indian Ocean modulates the circulation anomaly in the WNP in the latter case.more » « less
An official website of the United States government
