A<sc>bstract</sc> We explore the T-duality web of 6D Heterotic Little String Theories, focusing on flavor algebra reducing deformations. A careful analysis of the full flavor algebra, including Abelian factors, shows that the flavor rank is preserved under T-duality. This suggests a new T-duality invariant in addition to the Coulomb branch dimension and the two-group structure constants. We also engineer Little String Theories with non-simply laced flavor algebras, whose appearance we attribute to certain discrete 3-form fluxes in M-theory. Geometrically, these theories are engineered in F-theory with non-Kähler favorable K3 fibers. This geometric origin leads us to propose that freezing fluxes are preserved across T-duality. Along the way, we discuss various exotic models, including two inequivalent Spin(32)/ℤ2models that are dual to the same E8× E8theory, and a family of self-T-dual models.
more »
« less
A tutorial on computational classical logic and the sequent calculus
Abstract We present a model of computation that heavily emphasizes the concept of duality and the interaction between opposites–production interacts with consumption. The symmetry of this framework naturally explains more complicated features of programming languages through relatively familiar concepts. For example, binding a value to a variable is dual to manipulating the flow of control in a program. By looking at the computational interpretation of the sequent calculus, we find a language that lets us speak about duality, control flow, and evaluation order in programs as first-class concepts. We begin by reviewing Gentzen's LK sequent calculus and show how the Curry–Howard isomorphism still applies to give us a different basis for expressing computation. We then illustrate how the fundamental dilemma of computation in the sequent calculus gives rise to a duality between evaluation strategies : strict languages are dual to lazy languages. Finally, we discuss how the concept of focusing , developed in the setting of proof search, is related to the idea of type safety for computation expressed in the sequent calculus. In this regard, we compare and contrast two different methods of focusing that have appeared in the literature, static and dynamic focusing, and illustrate how they are two means to the same end.
more »
« less
- Award ID(s):
- 1719158
- PAR ID:
- 10300587
- Date Published:
- Journal Name:
- Journal of Functional Programming
- Volume:
- 28
- ISSN:
- 0956-7968
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Passive documents and active programs now widely comingle. Document languages include Turing-complete programming elements, and programming languages include sophisticated document notations. However, there are no formal foundations that model these languages. This matters because the interaction between document and program can be subtle and error-prone. In this paper we describe several such problems, then taxonomize and formalize document languages as levels of a document calculus. We employ the calculus as a foundation for implementing complex features such as reactivity, as well as for proving theorems about the boundary of content and computation. We intend for the document calculus to provide a theoretical basis for new document languages, and to assist designers in cleaning up the unsavory corners of existing languages.more » « less
-
null (Ed.)Sensitivity properties describe how changes to the input of a program affect the output, typically by upper bounding the distance between the outputs of two runs by a monotone function of the distance between the corresponding inputs. When programs are probabilistic, the distance between outputs is a distance between distributions. The Kantorovich lifting provides a general way of defining a distance between distributions by lifting the distance of the underlying sample space; by choosing an appropriate distance on the base space, one can recover other usual probabilistic distances, such as the Total Variation distance. We develop a relational pre-expectation calculus to upper bound the Kantorovich distance between two executions of a probabilistic program. We illustrate our methods by proving algorithmic stability of a machine learning algorithm, convergence of a reinforcement learning algorithm, and fast mixing for card shuffling algorithms. We also consider some extensions: using our calculus to show convergence of Markov chains to the uniform distribution over states and an asynchronous extension to reason about pairs of program executions with different control flow.more » « less
-
Comparing relational languages by their logical expressiveness is well understood. Less understood is how to compare relational languages by their ability to represent relational query patterns. Indeed, what are query patterns other than ''a certain way of writing a query''? And how can query patterns be defined across procedural and declarative languages, irrespective of their syntax? Our SIGMOD 2024 paper proposes a semantic definition of relational query patterns that uses a variant of structure-preserving mappings between the relational tables of queries. This formalism allows us to analyze the relative pattern expressiveness of relational languages. Notably, for the nondisjunctive language fragment, we show that relational calculus (RC) can express a larger class of patterns than the basic operators of relational algebra (RA). We also propose Relational Diagrams, a complete and sound diagrammatic representation of safe relational calculus. These diagrams can represent all query patterns for unions of non-disjunctive queries, in contrast to visual query representations that derive visual marks from the basic operators of algebra. Our anonymously preregistered user study shows that Relational Diagrams allow users to recognize relational patterns meaningfully faster and more accurately than they can with SQL.more » « less
-
Quantum algorithms for tasks such as factorization, search, and simulation rely on control flow such as branching and iteration that depends on the value of data in superposition. High-level programming abstractions for control flow, such as switches, loops, higher-order functions, and continuations, are ubiquitous in classical languages. By contrast, many quantum languages do not provide high-level abstractions for control flow in superposition, and instead require the use of hardware-level logic gates to implement such control flow. The reason for this gap is that whereas a classical computer supports control flow abstractions using a program counter that can depend on data, the typical architecture of a quantum computer does not analogously provide a program counter that can depend on data in superposition. As a result, the complete set of control flow abstractions that can be correctly realized on a quantum computer has not yet been established. In this work, we provide a complete characterization of the properties of control flow abstractions that are correctly realizable on a quantum computer. First, we prove that even on a quantum computer whose program counter exists in superposition, one cannot correctly realize control flow in quantum algorithms by lifting the classical conditional jump instruction to work in superposition. This theorem denies the ability to directly lift general abstractions for control flow such as the λ-calculus from classical to quantum programming. In response, we present the necessary and sufficient conditions for control flow to be correctly realizable on a quantum computer. We introduce the quantum control machine, an instruction set architecture featuring a conditional jump that is restricted to satisfy these conditions. We show how this design enables a developer to correctly express control flow in quantum algorithms using a program counter in place of logic gates.more » « less
An official website of the United States government

