skip to main content


Title: Mush, Melts and Metasediments: a History of Rhyolites from the Okataina Volcanic Centre, New Zealand, as Captured in Plagioclase
Abstract The Okataina Volcanic Centre (OVC), located in the Taupo Volcanic Zone, New Zealand, is a dominantly rhyolitic magmatic system in an arc setting, where eruptions are thought to be driven by mafic recharge. Here, Sr–Pb isotopes, and compositional and textural variations in plagioclase phenocrysts from 10 rhyolitic deposits (two caldera, one immediately post-caldera, four intra-caldera, and three extra-caldera) are used to investigate the OVC magmatic system and identify the sources and assimilants within this diverse mush zone. Plagioclase interiors exhibit normal and reverse zoning, and are commonly in disequilibrium with their accompanying glass, melt inclusions, and whole-rock compositions. This indicates that the crystals nucleated in melts that differed from their carrier magma. In contrast, the outermost rims of crystals exhibit normal zoning that is compositionally consistent with growth in cooling and fractionating melts just prior to eruption. At the intra-crystal scale, the total suite of 87Sr/86Sr ratios are highly variable (0·7042–0·7065 ± 0·0004 average 2SE); however, the majority (95 %) of the crystals are internally homogeneous within error. At whole-crystal scale (where better precision is obtained), 87Sr/86Sr ratios are much more homogeneous (0·70512–0·70543 ± 0·00001 average 2SE) and overlap with their host whole-rock Sr isotopic ratios. Whole-crystal Pb isotopic ratios also largely overlap with whole-rock Pb ratios. The plagioclase and whole-rock isotopic compositions indicate significant crustal assimilation (≥20 %) of Torlesse-like metasediments (local basement rock) by a depleted mid-ocean ridge mantle magma source, and Pb isotopes require variable fluid-dominant subduction flux. The new data support previous petrogenetic models for OVC magmas that require crystal growth in compositionally and thermally distinct magmas within a complex of disconnected melt-and-mush reservoirs. These reservoirs were rejuvenated by underplating basaltic magmas that serve as an eruption trigger. However, the outermost rims of the plagioclase imply that interaction between silicic melts and eruption-triggering mafic influx is largely limited to heat and volatile transfer, and results in rapid mobilization and syn-eruption mixing of rhyolitic melts. Finally, relatively uniform isotopic compositions of plagioclase indicate balanced contributions from the crust and mantle over the lifespan of the OVC magmatic system.  more » « less
Award ID(s):
1654275
NSF-PAR ID:
10300613
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Petrology
Volume:
62
Issue:
8
ISSN:
0022-3530
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigate the shallow plumbing system of the Deccan Traps Large Igneous Province using rock and mineral data from Giant Plagioclase Basalt (GPB) lava flows from around the entire province, but with a focus on the Saurashtra Peninsula, the Malwa Plateau, and the base and top of the Western Ghats (WG) lava pile. GPB lavas in the WG typically occur at the transition between chemically distinct basalt formations. Most GPB samples are evolved basalts, with high Fe and Ti contents, and show major and trace elements and Sr-Nd-Pb isotopic compositions generally similar to those of previously studied Deccan basalts. Major element modeling suggests that high-Fe, evolved melts typical of GPB basalts may derive from less evolved Deccan basalts by low-pressure fractional crystallization in a generally dry magmatic plumbing system. The basalts are strongly porphyritic, with 6–25% of mm- to cm-sized plagioclase megacrysts, frequently occurring as crystal clots, plus relatively rare olivine and clinopyroxene. The plagioclase crystals are mostly labradoritic, but some show bytownitic cores (general range of anorthite mol%: 78–55). A common feature is a strong Fe enrichment at the plagioclase rims, indicating interaction with an Fe-rich melt similar to that represented by the matrix compositions (FeOt up to 16–17 wt%). Plagioclase minor and trace elements and Sr isotopic compositions analyzed by laser ablation inductively coupled plasma mass spectrometry show evidence of a hybrid and magma mixing origin. In particular, several plagioclase crystals show variable 87Sr/86Sri, which only partially overlaps with the 87Sr/86Sri of the surrounding matrix. Diffusion modeling suggests residence times of decades to centuries for most plagioclase megacrysts. Notably, some plagioclase crystal clots show textural evidence of deformation as recorded by electron back-scatter diffraction analyses and chemical maps, which suggest that the plagioclase megacrysts were deformed in a crystal-rich environment in the presence of melt. We interpret the plagioclase megacrysts as remnants of a crystal mush originally formed in the shallow plumbing system of the Deccan basalts. In this environment, plagioclase acquired a zoned composition due to the arrival of chemically distinct basaltic magmas. Prior to eruption, a rapidly rising but dense Fe-rich magma was capable of disrupting the shallow level crystal mush, remobilizing part of it and carrying a cargo of buoyant plagioclase megacrysts. Our findings suggest that basaltic magmas from the Deccan Traps, and possibly from LIPs in general, are produced within complex transcrustal magmatic plumbing systems with widespread crystal mushes developed in the shallow crust. 
    more » « less
  2. Abstract Ignimbrite flare-ups are rare periods of intense silicic volcanism during which the pyroclastic volume and eruptive frequency is more than an order of magnitude higher than background activity. Investigating the compositional differences between flare-up and steady-state magmas provides critical constraints on the petrogenetic causes for the event and can offer unique opportunities to investigate the role of large-scale tectonic or geodynamic processes in arc magmatism. In this study, we focus on the bimodal Deschutes Formation ignimbrite flare-up of Central Oregon, which erupted unusually high volumes of pyroclastic material 6.25–5.45 Ma from a new axis of volcanism in the Cascades arc. This episode is marked by increased eruption rates and eruption of more silicic compositions relative to the Quaternary Cascade arc, which rarely erupts rhyolites. Ignimbrites are crystal-poor (<10%) dacite to rhyolites (mostly 65–77 wt.% SiO2) with anhydrous mineral assemblages and higher FeO/MgO, Y, Eu/Eu*, MREE and Zr/Sr, indicating drier magmatic evolution compared to the Quaternary arc, and are more similar to those from the rear-arc High Lava Plains (HLP) province that lies to the east. Magnetite-ilmenite oxybarometry indicates that Deschutes Formation felsic magmas tend to be hotter and more reduced (NNO-1 to NNO) than the Quaternary arc (NNO to NNO + 1.5). Rhyolite-MELTS geobarometry suggests complex storage of diverse Deschutes Formation magmas within the shallow crust (50–250 MPa), and the common co-eruption of multiple plagioclase populations, pumice compositions, and compositionally banded pumice suggest variable degrees of mixing and mingling of distinct magmas. Deschutes magmas also have low δ18Oplagioclase values that indicate partial melting and assimilation of hydrothermally altered shallow crust. Trace element systematics and rhyolite-MELTS modeling suggests that felsic pumice cannot be produced by simple fractionation of co-erupted mafic pumice or basaltic lavas, and requires a crustal melting origin, and trace elements and Pb isotopes suggest that young mafic crust may have been the primary protolith. We suggest that partial melting produced low-Si rhyolite melt (~72 wt.%) that acted as both a parent for the most evolved rhyolites, and as a mixing endmember to create the dacite to rhyodacite magmas with heterogenous plagioclase populations. Unlike the predominantly calc-alkaline basalts erupted in the Quaternary Cascade arc, Deschutes Formation primary basalts are mostly low-K tholeiites, indicative of decompression melting. These are similar to the compositions erupted during a contemporaneous pulse of low-K tholeiite volcanism across the whole HLP that reached into the Cascades rear-arc. We suggest that intra-arc extension focused decompression melts from the back-arc into the arc and that tensional stresses allowed this high flux of hot-dry-reduced basalt throughout the crustal column, causing partial melting of mafic protoliths and the production of hot-dry-reduced rhyolite melts. Depletion of incompatible elements in successive rhyolites implies progressive depletion in fertility of the protolith. Extension also allowed for the establishment of a robust hydrothermal system, and assimilation of hydrothermally-altered rocks by magmas residing in a shallow, complex storage network lead to low δ18O melts. Our findings suggest the integral role that extensional tectonics played in producing an unusual ignimbrite flare-up of hot-dry-reduced rhyolite magmas that are atypical of the Cascades arc and may be an important contributor to flare-ups at arcs worldwide. 
    more » « less
  3. Puyehue-Cordon Caulle (PCC) is an active volcanic complex located in the SVZ of the Andes that has had three major historic rhyodacitic eruptions with the most recent event in 2011-12. We provide petrologic and geochemical evidence that PCC is underlain by a crystal mush using recently identified basaltic mafic enclaves that highlights the involvement of distinct mafic magma components during the 2011-12 eruption. We suggest the mafic enclaves represent remnants of the crystal-rich mush that get entrained during eruption of the crystal-poor rhyodacite melt lens cap. This architecture requires the basaltic mush to produce rhyodacite through efficient fractionation. The dominant population of enclaves are equigranular, crystal-rich (45-55%), vesiculated (10-20%), and display interlocking grains between phases. Vesicles have complex shapes filling the irregular interlocking textures, while phenocrysts show stepwise normal zoning (uniform plagioclase cores, ~An90, overgrown with weakly zoned rims, ~An60). A second porphyritic population may represent mafic recharge into the system that bypasses the mush unperturbed. The porphyritic enclaves have spherical vesicles and tightly bound primitive mineral compositions (Fo80-86 vs Fo70-86 in the equigranular enclaves). Published geothermobarometry from the 2011-12 rhyodacite suggests shallow magma storage (5-7 km, 100-140 MPa, 895°C), which we compare against newly determined mineral-mineral trace-element partitioning based thermometry. Our thermometry indicates the equigranular enclaves were stored at ~900-1000°C at the time of eruption suggesting both a compositionally and thermally zoned magma system. We combine this temperature information with trace element data and mass balance calculations from various minerals phases and melt to substantiate our previous hypothesis that the basaltic enclaves can produce rhyodacite given their crystallinity. These estimates may support a spatially connected basaltic crystal-mush underlying a rhyodacite melt lens cap further proving highly efficient rhyolite formation at PCC. PCC’s enclaves present one of the largest compositional gaps on record globally. We compare them to other enclave-bearing systems and how PCC is an important end-member to understand enclaves as well as rhyolite formation. 
    more » « less
  4. Abstract

    Continental flood basalts are more prone to compositional modification from passage through thicker and (or) more felsic crust in comparison to their oceanic counterparts. The Steens Basalt in southeast Oregon (~17 Ma) is among the oldest and most mafic members of the Columbia River Basalt Group and provides a record of the early stages of flood basalt volcanism. We evaluate the balance of mantle sources in time during the onset of Columbia River Basalt Group magmatism and assess the effect of crustal passage using stratigraphically controlled Sr, Nd, Pb, Hf, Os, and O isotopic compositions, as well as whole rock major and trace element data.

    Mixing models indicate that depleted and enriched mantle sources identified by previous workers contribute in varying proportions during the life of the magmatic system, with the greatest contribution by depleted mantle when eruption rate and presumed intrusion rate increase. During waxing, enrichment of δ18O in some flows signals cryptic deep fractionation of abundant clinopyroxene followed by shallow fractionation of olivine ± clinopyroxene ± plagioclase. Os concentrations are among the highest worldwide at a given MgO (0.29–0.86 ppb at 6.0 to 10.9 wt.%). We argue that high Os results from scavenging of sulfides by recharging magmas passing through earlier crystallized magmas. Elevated87Sr/86Sr in the latest stage supports modest assimilation of partial melts from mafic accreted terranes, facilitated by thermal priming of crust by persistent magmatism. This work provides a more detailed schematic view of the Steens Basalt magmatic system, from mantle origin through crustal staging.

     
    more » « less
  5. The origins and evolution of small-volume, high-silica intercontinental rhyolites have been attributed to numerous processes such as derivation from granitic partial melts or small melt fractions remaining from fractional crystallization. Investigations into the thermo-chemical-temporal evolution of these rhyolites has provided insights into the storage and differentiation mechanisms of small volume magmas. In the Mineral Mountains, Utah, high-silica rhyolites erupted through Miocene granitoids between ca. 0.8 and 0.5 Ma, and produced numerous domes, obsidian flows, and pyroclastic deposits. Temporally equivalent basalts erupted in the valleys north and east of the Mineral Mountains, hinting at a potential relationship between mafic and felsic volcanic activity. Here we test competing hypotheses. Are the rhyolites products of extreme fractionation of the coeval basalts? Or do they represent anatectic melts of the granitoids through which they erupted? We address these questions through modeling with new whole rock geochemical data and zircon trace element chemistry, thermometry, and U/Pb LA-ICPMS dates. We couple these data with new 40Ar/39Ar eruption ages to improve upon the volcanic stratigraphy and address the recurrence interval for the most evolved rhyolites. Geochemical data from zircon crystals extracted from six domes suggest increasing differentiation with age and eruptive location, however there is minimal evidence for recycling of earlier crystallized zircon. These data suggest that magma batches were isolated from one another and zircon nucleation and crystallization occurred close to the eruption, thus limiting the residence time of the magmas. These data also perhaps suggest that the magmas were generated in small batches within each of the granitoids rather than from a large crystal mush body underlying the region, as seen at large silicic systems. Our preliminary geochemical models and zircon petrochronology eliminate extreme fractionation and favor local anatectic melting of different granitoids as a mechanism to produce chemical signatures observed in the Quaternary rhyolites in the Mineral Mountains. 
    more » « less