skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nuclear envelope mechanobiology: linking the nuclear structure and function
Award ID(s):
2025505 1929188
PAR ID:
10300627
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nucleus
Volume:
12
Issue:
1
ISSN:
1949-1034
Page Range / eLocation ID:
90 to 114
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nuclear spin optical rotation (NSOR) has been investigated as a magneto‐optical effect, which holds the potential for applications, including hybrid optical‐nuclear magnetic resonance (NMR) spectroscopy and gradientless imaging. The intrinsic nature of NSOR renders its detection relatively insensitive, which has prevented it moving from a proof of concept to a method supporting chemical characterizations. In this work, the dissolution dynamic nuclear polarization technique is introduced to provide nuclear spin polarization, increasing the signal‐to‐noise ratio by several thousand times. NSOR signals of1H and19F nuclei are observed in a single scan for diluted compounds, which has made this effect suitable for the determination of electronic transitions from a specific nucleus in a large molecule. 
    more » « less
  2. The resistance of the liquid drop-like nucleus to deformation is dependent on whether the nuclear lamina is smooth or wrinkled. When it is smooth and taut, the nuclear shape can be calculated from geometric constraints on volume and surface area. 
    more » « less