skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of intervalence charge transfer interaction between π-stacked mixed valent tetrathiafulvalene ligands on the electrical conductivity of 3D metal–organic frameworks
Achieving a molecular-level understanding of how the structures and compositions of metal–organic frameworks (MOFs) influence their charge carrier concentration and charge transport mechanism—the two key parameters of electrical conductivity—is essential for the successful development of electrically conducting MOFs, which have recently emerged as one of the most coveted functional materials due to their diverse potential applications in advanced electronics and energy technologies. Herein, we have constructed four new alkali metal (Na, K, Rb, and Cs) frameworks based on an electron-rich tetrathiafulvalene tetracarboxylate (TTFTC) ligand, which formed continuous π-stacks, albeit with different π–π-stacking and S⋯S distances ( d π–π and d S⋯S ). These MOFs also contained different amounts of aerobically oxidized TTFTC˙ + radical cations that were quantified by electron spin resonance (ESR) spectroscopy. Density functional theory calculations and diffuse reflectance spectroscopy demonstrated that depending on the π–π-interaction and TTFTC˙ + population, these MOFs enjoyed varying degrees of TTFTC/TTFTC˙ + intervalence charge transfer (IVCT) interactions, which commensurately affected their electronic and optical band gaps and electrical conductivity. Having the shortest d π–π (3.39 Å) and the largest initial TTFTC˙ + population (∼23%), the oxidized Na-MOF 1-ox displayed the narrowest band gap (1.33 eV) and the highest room temperature electrical conductivity (3.6 × 10 −5 S cm −1 ), whereas owing to its longest d π–π (3.68 Å) and a negligible TTFTC˙ + population, neutral Cs-MOF 4 exhibited the widest band gap (2.15 eV) and the lowest electrical conductivity (1.8 × 10 −7 S cm −1 ). The freshly prepared but not optimally oxidized K-MOF 2 and Rb-MOF 3 initially displayed intermediate band gaps and conductivity, however, upon prolonged aerobic oxidation, which raised the TTFTC˙ + population to saturation levels (∼25 and 10%, respectively), the resulting 2-ox and 3-ox displayed much narrower band gaps (∼1.35 eV) and higher electrical conductivity (6.6 × 10 −5 and 4.7 × 10 −5 S cm −1 , respectively). The computational studies indicated that charge movement in these MOFs occurred predominantly through the π-stacked ligands, while the experimental results displayed the combined effects of π–π-interactions, TTFTC˙ + population, and TTFTC/TTFTC˙ + IVCT interaction on their electronic and optical properties, demonstrating that IVCT interactions between the mixed-valent ligands could be exploited as an effective design strategy to develop electrically conducting MOFs.  more » « less
Award ID(s):
1809092 1660329
PAR ID:
10300782
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
12
Issue:
40
ISSN:
2041-6520
Page Range / eLocation ID:
13379 to 13391
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A new electrically conducting 3D metal-organic framework (MOF) with a unique architecture was synthesized using 1,2,4,5-tetrakis-(4-carboxyphenyl)benzene (TCPB) a redox-active cis -dipyridyl-tetrathiafulvalene ( Z -DPTTF) ligand. While TCPB formed Zn 2 (COO) 4 secondary building units (SBUs), instead of connecting the Zn 2 -paddlewheel SBUs located in different planes and forming a traditional pillared paddlewheel MOF, the U-shaped Z -DPTTF ligands bridged the neighboring SBUs formed by the same TCPB ligand like a sine-curve along the b axis that created a new sine -MOF architecture. The pristine sine -MOF displayed an intrinsic electrical conductivity of 1 × 10 −8  S/m, which surged to 5 × 10 −7  S/m after I 2 doping due to partial oxidation of electron rich Z -DPTTF ligands that raised the charge-carrier concentration inside the framework. However, the conductivities of the pristine and I 2 -treated sine -MOFs were modest possibly because of large spatial distances between the ligands that prevented π-donor/acceptor charge-transfer interactions needed for effective through-space charge movement in 3D MOFs that lack through coordination-bond charge transport pathways. 
    more » « less
  2. The development of new two-dimensional (2D) d-π conjugated metal-organic frameworks (MOFs) holds great promise for the construction of a new generation of porous and semiconductive materials. This paper describes the synthesis, structural characterization, and electronic properties of a new d-π conjugated 2D MOF based on the use of a new ligand 2,3,8,9,14,15-hexahydroxytrinaphthylene. The reticular self-assembly of this large π-conjugated organic building block with Cu(II) ions in a mixed solvent system of 1,3-dimethyl-2-imidazolidinone (DMI) and H2O with the addition of ammonia water or ethylenediamine leads to a highly crystalline MOF Cu3(HHTN)2, which possesses pore aperture of 2.5 nm. Cu3(HHTN)2 MOF shows moderate electrical conductivity of 9.01 × 10−8 S·cm−1 at 385 K and temperature-dependent band gap ranging from 0.75 to 1.65 eV. After chemical oxidation by I2, the conductivity of Cu3(HHTN)2 can be increased by 360 times. This access to HHTN based MOF adds an important member to previously reported MOF systems with hexagonal lattice, paving the way towards systematic studies of structure-property relationships of semiconductive MOFs. 
    more » « less
  3. Abstract Due to their diverse potential in advanced electronics and energy technologies, electrically conducting metal‐organic frameworks (MOFs) are drawing significant attention. Although hexagonal 2D MOFs generally display impressive electrical conductivity because of their dual in‐plane (through bonds) and out‐of‐plane (through π‐stacked ligands) charge transport pathways, notable differences between these two orthogonal conduction routes cause anisotropic conductivity and lower bulk conductivity. To address this issue, we have developed the first redox‐complementary dual‐ligand 2D MOF Cu3(HHTP)(HHTQ), featuring a π‐donor hexahydroxytriphenylene (HHTP) ligand and a π‐acceptor hexahydroxytricycloquinazoline (HHTQ) ligand located at alternate corners of the hexagons, which form either parallel HHTP and HHTQ stacks (AA stacking) or alternating HHTP/HHTQ stacks (AB stacking) along the c‐axis. Regardless of the stacking pattern, Cu3(HHTP)(HHTQ) supports more effective out‐of‐plane conduction through either separate π‐donor and π‐acceptor stacks or alternating π‐donor/acceptor stacks, while promoting in‐plane conduction through the pushpull‐like heteroleptic coordination network. As a result, Cu3(HHTP)(HHTQ) exhibits higher bulk conductivity (0.12 S/m at 295 K) than single‐ligand MOFs Cu3(HHTP)2(7.3 × 10−2S/m) and Cu3(HHTQ)2(5.9 × 10−4S/m). This work introduces a new design approach to improve the bulk electrical conductivity of 2D MOFs by supporting charge transport in both in‐ and out‐of‐plane direcations. 
    more » « less
  4. Novel columnar lanthanide metal–organic frameworks (Ln-MOFs) based on a butterfly-shaped electron-rich π-extended tetrathia-fulvalene ligand (ExTTFTB) were synthesized and their electronic properties were investigated. Upon iodine-induced ligand oxidation, the Tb-MOF displayed ca. 100-fold higher electrical conductivity (5 × 10 −7 S m −1 ) than the neutral pristine MOF. 
    more » « less
  5. Metallophthalocyanine (MPc)-linked conductive two-dimensional (2D) metal−organic frameworks (MOFs) hold tremendous promise as modular 2D materials in sensing, catalysis, and energy-related applications due to their combinatory bimetallic system from the MPc core and bridging metal nodes, endowing them with high electrical conductivity and multifunctionality. Despite significant advances, there is a gap in fundamental understanding regarding the periodic effects of metal nodes on the structural properties of MP-linked 2D MOFs. Herein, we report a series of highly crystalline MOFs wherein copper phthalocyanine (CuPc) is linked with Ni, Cu, and Zn nodes (CuPc-O-M, M: Ni, Cu, Zn). The prepared CuPc-O-M MOFs exhibit p-type semiconducting properties with an exceptionally high range of electrical conductivity. Notably, the differences in the 3d orbital configurations of the Ni, Cu, and Zn nodes in CuPc-O-M MOFs lead to perturbations of the interlayer stacking patterns of the 2D framework materials, which ultimately affect material properties, such as semiconducting band gaps and charge transport within the framework. The Cu2+ (3d9) metal node within the eclipsed interlayer stacking of CuPc-O-Cu MOF demonstrates excellent charge transport, which results in the smallest band gap of 1.14 eV and the highest electrical conductivity of 9.3 S m−1, while the Zn2+ (3d10) metal node within CuPc-O-Zn results in a slightly inclined interlayer stacking, leading to the largest band gap of 1.27 eV and the lowest electrical conductivity of 2.9 S m−1. These findings form an important foundation in the strategic molecular design of this class of materials for multifaceted functionality that builds upon the electronic properties of these materials. 
    more » « less