skip to main content


Title: Two-dimensional d-π conjugated metal-organic framework based on hexahydroxytrinaphthylene
The development of new two-dimensional (2D) d-π conjugated metal-organic frameworks (MOFs) holds great promise for the construction of a new generation of porous and semiconductive materials. This paper describes the synthesis, structural characterization, and electronic properties of a new d-π conjugated 2D MOF based on the use of a new ligand 2,3,8,9,14,15-hexahydroxytrinaphthylene. The reticular self-assembly of this large π-conjugated organic building block with Cu(II) ions in a mixed solvent system of 1,3-dimethyl-2-imidazolidinone (DMI) and H2O with the addition of ammonia water or ethylenediamine leads to a highly crystalline MOF Cu3(HHTN)2, which possesses pore aperture of 2.5 nm. Cu3(HHTN)2 MOF shows moderate electrical conductivity of 9.01 × 10−8 S·cm−1 at 385 K and temperature-dependent band gap ranging from 0.75 to 1.65 eV. After chemical oxidation by I2, the conductivity of Cu3(HHTN)2 can be increased by 360 times. This access to HHTN based MOF adds an important member to previously reported MOF systems with hexagonal lattice, paving the way towards systematic studies of structure-property relationships of semiconductive MOFs.  more » « less
Award ID(s):
1757371
NSF-PAR ID:
10182903
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Nano Research
ISSN:
1998-0124
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Achieving a molecular-level understanding of how the structures and compositions of metal–organic frameworks (MOFs) influence their charge carrier concentration and charge transport mechanism—the two key parameters of electrical conductivity—is essential for the successful development of electrically conducting MOFs, which have recently emerged as one of the most coveted functional materials due to their diverse potential applications in advanced electronics and energy technologies. Herein, we have constructed four new alkali metal (Na, K, Rb, and Cs) frameworks based on an electron-rich tetrathiafulvalene tetracarboxylate (TTFTC) ligand, which formed continuous π-stacks, albeit with different π–π-stacking and S⋯S distances ( d π–π and d S⋯S ). These MOFs also contained different amounts of aerobically oxidized TTFTC˙ + radical cations that were quantified by electron spin resonance (ESR) spectroscopy. Density functional theory calculations and diffuse reflectance spectroscopy demonstrated that depending on the π–π-interaction and TTFTC˙ + population, these MOFs enjoyed varying degrees of TTFTC/TTFTC˙ + intervalence charge transfer (IVCT) interactions, which commensurately affected their electronic and optical band gaps and electrical conductivity. Having the shortest d π–π (3.39 Å) and the largest initial TTFTC˙ + population (∼23%), the oxidized Na-MOF 1-ox displayed the narrowest band gap (1.33 eV) and the highest room temperature electrical conductivity (3.6 × 10 −5 S cm −1 ), whereas owing to its longest d π–π (3.68 Å) and a negligible TTFTC˙ + population, neutral Cs-MOF 4 exhibited the widest band gap (2.15 eV) and the lowest electrical conductivity (1.8 × 10 −7 S cm −1 ). The freshly prepared but not optimally oxidized K-MOF 2 and Rb-MOF 3 initially displayed intermediate band gaps and conductivity, however, upon prolonged aerobic oxidation, which raised the TTFTC˙ + population to saturation levels (∼25 and 10%, respectively), the resulting 2-ox and 3-ox displayed much narrower band gaps (∼1.35 eV) and higher electrical conductivity (6.6 × 10 −5 and 4.7 × 10 −5 S cm −1 , respectively). The computational studies indicated that charge movement in these MOFs occurred predominantly through the π-stacked ligands, while the experimental results displayed the combined effects of π–π-interactions, TTFTC˙ + population, and TTFTC/TTFTC˙ + IVCT interaction on their electronic and optical properties, demonstrating that IVCT interactions between the mixed-valent ligands could be exploited as an effective design strategy to develop electrically conducting MOFs. 
    more » « less
  2. null (Ed.)
    A new electrically conducting 3D metal-organic framework (MOF) with a unique architecture was synthesized using 1,2,4,5-tetrakis-(4-carboxyphenyl)benzene (TCPB) a redox-active cis -dipyridyl-tetrathiafulvalene ( Z -DPTTF) ligand. While TCPB formed Zn 2 (COO) 4 secondary building units (SBUs), instead of connecting the Zn 2 -paddlewheel SBUs located in different planes and forming a traditional pillared paddlewheel MOF, the U-shaped Z -DPTTF ligands bridged the neighboring SBUs formed by the same TCPB ligand like a sine-curve along the b axis that created a new sine -MOF architecture. The pristine sine -MOF displayed an intrinsic electrical conductivity of 1 × 10 −8  S/m, which surged to 5 × 10 −7  S/m after I 2 doping due to partial oxidation of electron rich Z -DPTTF ligands that raised the charge-carrier concentration inside the framework. However, the conductivities of the pristine and I 2 -treated sine -MOFs were modest possibly because of large spatial distances between the ligands that prevented π-donor/acceptor charge-transfer interactions needed for effective through-space charge movement in 3D MOFs that lack through coordination-bond charge transport pathways. 
    more » « less
  3. Abstract

    Metal–organic frameworks (MOFs) are promising materials for electrocatalysis; however, lack of electrical conductivity in the majority of existing MOFs limits their effective utilization in the field. Herein, an excellent catalytic activity of a 2D copper (Cu)‐based conductive MOF, copper tetrahydroxyquinone (CuTHQ), is reported for aqueous CO2reduction reaction (CO2RR) at low overpotentials. It is revealed that CuTHQ nanoflakes (NFs) with an average lateral size of 140 nm exhibit a negligible overpotential of 16 mV for the activation of this reaction, a high current density of ≈173 mA cm−2at −0.45 V versus RHE, an average Faradaic efficiency (F.E.) of ≈91% toward CO production, and a remarkable turnover frequency as high as ≈20.82 s−1. In the low overpotential range, the obtained CO formation current density is more than 35 and 25 times higher compared to state‐of‐the‐art MOF and MOF‐derived catalysts, respectively. The operando Cu K‐edge X‐ray absorption near edge spectroscopy and density functional theory calculations reveal the existence of reduced Cu (Cu+) during CO2RR which reversibly returns to Cu2+after the reaction. The outstanding CO2catalytic functionality of conductive MOFs (c‐MOFs) can open a way toward high‐energy‐density electrochemical systems.

     
    more » « less
  4. We have considered three two-dimensional (2D) π-conjugated polymer network ( i.e. , covalent organic frameworks, COFs) materials based on pyrene, porphyrin, and zinc-porphyrin cores connected via diacetylenic linkers. Their electronic structures, investigated at the density functional theory global-hybrid level, are indicative of valence and conduction bands that have large widths, ranging between 1 and 2 eV. Using a molecular approach to derive the electronic couplings between adjacent core units and the electron-vibration couplings, the three π-conjugated 2D COFs are predicted to have ambipolar charge-transport characteristics with electron and hole mobilities in the range of 65–95 cm 2 V −1 s −1 . Such predicted values rank these 2D COFs among the highest-mobility organic semiconductors. In addition, we have synthesized the zinc-porphyrin based 2D COF and carried out structural characterization via powder X-ray diffraction, high-resolution transmission electron microscopy, and surface area analysis, which demonstrates the feasibility of these electroactive networks. Steady-state and flash-photolysis time-resolved microwave conductivity measurements on the zinc-porphyrin COF point to appreciable, broadband photoconductivity while transmission spectral measurements are indicative of extended π-conjugation. 
    more » « less
  5. An intriguing new class of two-dimensional (2D) materials based on metal–organic frameworks (MOFs) has recently been developed that displays electrical conductivity, a rarity among these nanoporous materials. The emergence of conducting MOFs raises questions about their fundamental electronic properties, but few studies exist in this regard. Here, we present an integrated theory and experimental investigation to probe the effects of metal substitution on the charge transport properties of M-HITP, where M = Ni or Pt and HITP = 2,3,6,7,10,11-hexaiminotriphenylene. The results show that the identity of the M-HITP majority charge carrier can be changed without intentional introduction of electronically active dopants. We observe that the selection of the metal ion substantially affects charge transport. Using the known structure, Ni-HITP, we synthesized a new amorphous material, a-Pt-HITP, which although amorphous is nevertheless found to be porous upon desolvation. Importantly, this new material exhibits p-type charge transport behavior, unlike Ni-HITP, which displays n-type charge transport. These results demonstrate that both p- and n-type materials can be achieved within the same MOF topology through appropriate choice of the metal ion. 
    more » « less