A<sc>bstract</sc> The planar integrability of$$ \mathcal{N} $$ = 4 super-Yang-Mills (SYM) is the cornerstone for numerous exact observables. We show that the large charge sector of the SU(2)$$ \mathcal{N} $$ = 4 SYM provides another interesting solvable corner which exhibits striking similarities despite being far from the planar limit. We study non-BPS operators obtained by small deformations of half-BPS operators withR-chargeJin the limitJ→ ∞ with$$ {\lambda}_J\equiv {g}_{\textrm{YM}}^2J/2 $$ fixed. The dynamics in thislarge charge ’t Hooft limitis constrained by a centrally-extended$$ \mathfrak{psu} $$ (2|2)2symmetry that played a crucial role for the planar integrability. To the leading order in 1/J, the spectrum is fully fixed by this symmetry, manifesting the magnon dispersion relation familiar from the planar limit, while it is constrained up to a few constants at the next order. We also determine the structure constant of two large charge operators and the Konishi operator, revealing a rich structure interpolating between the perturbative series at weak coupling and the worldline instantons at strong coupling. In addition we compute heavy-heavy-light-light (HHLL) four-point functions of half-BPS operators in terms of resummed conformal integrals and recast them into an integral form reminiscent of the hexagon formalism in the planar limit. For general SU(N) gauge groups, we study integrated HHLL correlators by supersymmetric localization and identify a dual matrix model of sizeJ/2 that reproduces our large charge result atN= 2. Finally we discuss a relation to the physics on the Coulomb branch and explain how the dilaton Ward identity emerges from a limit of the conformal block expansion. We comment on generalizations including the large spin ’t Hooft limit, the combined largeN-largeJlimits, and applications to general$$ \mathcal{N} $$ = 2 superconformal field theories.
more »
« less
Crossing bridges with strong Szegő limit theorem
A bstract We develop a new technique for computing a class of four-point correlation functions of heavy half-BPS operators in planar $$ \mathcal{N} $$ N = 4 SYM theory which admit factorization into a product of two octagon form factors with an arbitrary bridge length. We show that the octagon can be expressed as the Fredholm determinant of the integrable Bessel operator and demonstrate that this representation is very efficient in finding the octagons both at weak and strong coupling. At weak coupling, in the limit when the four half-BPS operators become null separated in a sequential manner, the octagon obeys the Toda lattice equations and can be found in a closed form. At strong coupling, we exploit the strong Szegő limit theorem to derive the leading asymptotic behavior of the octagon and, then, apply the method of differential equations to determine the remaining subleading terms of the strong coupling expansion to any order in the inverse coupling. To achieve this goal, we generalize results available in the literature for the asymptotic behavior of the determinant of the Bessel operator. As a byproduct of our analysis, we formulate a Szegő-Akhiezer-Kac formula for the determinant of the Bessel operator with a Fisher-Hartwig singularity and develop a systematic approach to account for subleading power suppressed contributions.
more »
« less
- Award ID(s):
- 1713125
- PAR ID:
- 10300850
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2021
- Issue:
- 4
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> We study off-shelln-particle form factors of half-BPS operators built fromncomplex scalar fields at the two-loop order in the planar maximally supersymmetric Yang-Mills theory (sYM). These are known as minimal form factors. We construct their representation as a sum of independent scalar Feynman integrals relying on two complementary techniques. First, by going to the Coulomb branch of the theory by employing the spontaneous symmetry breaking which induces masses, but only for external particles while retaining masslessness for virtual states propagating in quantum loops. For a low number of external legs, this entails an uplift of massless integrands to their massive counterparts. Second, utilizing the$$ \mathcal{N} $$ = 1 superspace formulation of$$ \mathcal{N} $$ = 4 sYM and performing algebra of covariant derivatives off-shell. Both techniques provide identical results. These form factors are then studied in the near-mass-shell limit with the off-shellness regularizing emerging infrared divergences. We observe their exponentiation and confirm the octagon anomalous dimension, not the cusp, as the coefficient of the Sudakov double logarithmic behavior. By subtracting these singularities and defining a finite remainder, we verified that its symbol is identical to the one found a decade ago in the conformal case. Beyond-the-symbol contributions are different in the two cases, however.more » « less
-
A<sc>bstract</sc> In this paper, we discuss the factorization of the Sudakov form factor on the Coulomb branch of maximally supersymmetric Yang-Mills theory in the near mass-shell limit. We unravel all pinch singularities of this observable making use of the Method of Regions. We find their operator content in terms of matrix elements of Wilson lines on semi-infinite and finite intervals for the jet and ultrasoft functions, respectively. However, naive factorization into these incoherent momentum components is broken at two-loop order by effects subleading in the parameter of dimensional regularization. To save the day, we perform an appropriate twisting of the functions involved as well as simultaneous finite scheme transformation of the ’t Hooft coupling. Infrared physics of twisted jet and ultrasoft functions is governed by the octagon anomalous dimension, while the untwisted ultrasoft function possesses infrared evolution driven by an anomalous dimension different from the ubiquitous cusp.more » « less
-
A<sc>bstract</sc> We combine supersymmetric localization with the numerical conformal bootstrap to bound the scaling dimension and OPE coefficient of the lowest-dimension unprotected operator in$$ \mathcal{N} $$ = 4 SU(N) super-Yang-Mills theory for a wide range ofNand Yang-Mills couplingsgYM. We find that our bounds are approximately saturated by weak coupling results at smallgYM. Furthermore, at largeNour bounds interpolate between integrability results for the Konishi operator at smallgYMand strong-coupling results, including the first few stringy corrections, for the lowest-dimension double-trace operator at largegYM. In particular, our scaling dimension bounds describe the level splitting between the single- and double-trace operators at intermediate coupling.more » « less
-
A bstract We study Ising Field Theory (the scaling limit of Ising model near the Curie critical point) in pure imaginary external magnetic field. We put particular emphasis on the detailed structure of the Yang-Lee edge singularity. While the leading singular behavior is controlled by the Yang-Lee fixed point (= minimal CFT $$ \mathcal{M} $$ M 2 / 5 ), the fine structure of the subleading singular terms is determined by the effective action which involves a tower of irrelevant operators. We use numerical data obtained through the “Truncated Free Fermion Space Approach” to estimate the couplings associated with two least irrelevant operators. One is the operator $$ T\overline{T} $$ T T ¯ , and we use the universal properties of the $$ T\overline{T} $$ T T ¯ deformation to fix the contributions of higher orders in the corresponding coupling parameter α . Another irrelevant operator we deal with is the descendant L_ 4 $$ \overline{L} $$ L ¯ _ 4 ϕ of the relevant primary ϕ in $$ \mathcal{M} $$ M 2 / 5 . The significance of this operator is that it is the lowest dimension operator which breaks integrability of the effective theory. We also establish analytic properties of the particle mass M (= inverse correlation length) as the function of complex magnetic field.more » « less
An official website of the United States government

