skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Level repulsion in $$ \mathcal{N} $$ = 4 super-Yang-Mills via integrability, holography, and the bootstrap
A<sc>bstract</sc> We combine supersymmetric localization with the numerical conformal bootstrap to bound the scaling dimension and OPE coefficient of the lowest-dimension unprotected operator in$$ \mathcal{N} $$ N = 4 SU(N) super-Yang-Mills theory for a wide range ofNand Yang-Mills couplingsgYM. We find that our bounds are approximately saturated by weak coupling results at smallgYM. Furthermore, at largeNour bounds interpolate between integrability results for the Konishi operator at smallgYMand strong-coupling results, including the first few stringy corrections, for the lowest-dimension double-trace operator at largegYM. In particular, our scaling dimension bounds describe the level splitting between the single- and double-trace operators at intermediate coupling.  more » « less
Award ID(s):
2111977
PAR ID:
10570951
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2024
Issue:
7
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> The planar integrability of$$ \mathcal{N} $$ N = 4 super-Yang-Mills (SYM) is the cornerstone for numerous exact observables. We show that the large charge sector of the SU(2)$$ \mathcal{N} $$ N = 4 SYM provides another interesting solvable corner which exhibits striking similarities despite being far from the planar limit. We study non-BPS operators obtained by small deformations of half-BPS operators withR-chargeJin the limitJ→ ∞ with$$ {\lambda}_J\equiv {g}_{\textrm{YM}}^2J/2 $$ λ J g YM 2 J / 2 fixed. The dynamics in thislarge charge ’t Hooft limitis constrained by a centrally-extended$$ \mathfrak{psu} $$ psu (2|2)2symmetry that played a crucial role for the planar integrability. To the leading order in 1/J, the spectrum is fully fixed by this symmetry, manifesting the magnon dispersion relation familiar from the planar limit, while it is constrained up to a few constants at the next order. We also determine the structure constant of two large charge operators and the Konishi operator, revealing a rich structure interpolating between the perturbative series at weak coupling and the worldline instantons at strong coupling. In addition we compute heavy-heavy-light-light (HHLL) four-point functions of half-BPS operators in terms of resummed conformal integrals and recast them into an integral form reminiscent of the hexagon formalism in the planar limit. For general SU(N) gauge groups, we study integrated HHLL correlators by supersymmetric localization and identify a dual matrix model of sizeJ/2 that reproduces our large charge result atN= 2. Finally we discuss a relation to the physics on the Coulomb branch and explain how the dilaton Ward identity emerges from a limit of the conformal block expansion. We comment on generalizations including the large spin ’t Hooft limit, the combined largeN-largeJlimits, and applications to general$$ \mathcal{N} $$ N = 2 superconformal field theories. 
    more » « less
  2. A<sc>bstract</sc> Motivated by understanding the scattering of gravitons and their superpartners from extended (p,q)-strings in type IIB string theory via AdS/CFT, we study an integrated two-point function of stress tensor multiplet operators in the presence of a half-BPS line defect in$$ \mathcal{N} $$ N = 4 SU(N) super-Yang-Mills theory. We determine this integrated correlator at the five lowest non-trivial orders in$$ 1/\sqrt{N} $$ 1 / N at fixed Yang-Mills coupling andθangle. Our calculations are performed explicitly when the line defect is a Wilson line, in which case we find a finite number of perturbative contributions at each order in$$ 1/\sqrt{N} $$ 1 / N , as well as instanton contributions. Using SL(2,ℤ) transformations, our results can also be applied to Wilson-’t Hooft line defects dual to extended (p,q)-strings in the bulk. We analyze features of these integrated correlators in the weak coupling expansion by comparing with open-closed amplitudes of type IIB string theory on AdS5× S5, as well as in its flat space limit. We predict new higher-derivative interaction vertices on the D1-brane and, more generally, on (p,q)-strings. 
    more » « less
  3. A<sc>bstract</sc> The Seiberg-Witten solution to four-dimensional$$ \mathcal{N} $$ N = 2 super-Yang-Mills theory with gauge group SU(N) and without hypermultiplets is used to investigate the neighborhood of the maximal Argyres-Douglas points of type$$ \left({\mathfrak{a}}_1,{\mathfrak{a}}_{N-1}\right) $$ a 1 a N 1 . A convergent series expansion for the Seiberg-Witten periods near the Argyres-Douglas points is obtained by analytic continuation of the series expansion around theℤ2Nsymmetric point derived in arXiv:2208.11502. Along with direct integration of the Picard-Fuchs equations for the periods, the expansion is used to determine the location of the walls of marginal stability for SU(3). The intrinsic periods and Kähler potential of the$$ \left({\mathfrak{a}}_1,{\mathfrak{a}}_{N-1}\right) $$ a 1 a N 1 superconformal fixed point are computed by letting the strong coupling scale tend to infinity. We conjecture that the resulting intrinsic Kähler potential is positive definite and convex, with a unique minimum at the Argyres-Douglas point, provided only intrinsic Coulomb branch operators with unitary scaling dimensions ∆>1 acquire a vacuum expectation value, and provide both analytical and numerical evidence in support of this conjecture. In all the low rank examples considered here, it is found that turning on moduli dual to ∆ ≤ 1 operators spoils the positivity and convexity of the intrinsic Kähler potential. 
    more » « less
  4. A<sc>bstract</sc> We study off-shelln-particle form factors of half-BPS operators built fromncomplex scalar fields at the two-loop order in the planar maximally supersymmetric Yang-Mills theory (sYM). These are known as minimal form factors. We construct their representation as a sum of independent scalar Feynman integrals relying on two complementary techniques. First, by going to the Coulomb branch of the theory by employing the spontaneous symmetry breaking which induces masses, but only for external particles while retaining masslessness for virtual states propagating in quantum loops. For a low number of external legs, this entails an uplift of massless integrands to their massive counterparts. Second, utilizing the$$ \mathcal{N} $$ N = 1 superspace formulation of$$ \mathcal{N} $$ N = 4 sYM and performing algebra of covariant derivatives off-shell. Both techniques provide identical results. These form factors are then studied in the near-mass-shell limit with the off-shellness regularizing emerging infrared divergences. We observe their exponentiation and confirm the octagon anomalous dimension, not the cusp, as the coefficient of the Sudakov double logarithmic behavior. By subtracting these singularities and defining a finite remainder, we verified that its symbol is identical to the one found a decade ago in the conformal case. Beyond-the-symbol contributions are different in the two cases, however. 
    more » « less
  5. A<sc>bstract</sc> We study the “three particle coupling”$$ {\Gamma}_{11}^1\left(\xi \right) $$ Γ 11 1 ξ , in 2dIsing Field Theory in a magnetic field, as the function of the scaling parameterξ:=h/(−m)15/8, wherem∼Tc−Tandh∼Hare scaled deviation from the critical temperature and scaled external field, respectively. The “φ3coupling”$$ {\Gamma}_{11}^1 $$ Γ 11 1 is defined in terms of the residue of the 2 → 2 elastic scattering amplitude at its pole associated with the lightest particle itself. We limit attention to the High-Temperature domain, so thatmis negative. We suggest “standard analyticity”:$$ {\left({\Gamma}_{11}^1\right)}^2 $$ Γ 11 1 2 , as the function ofu:=ξ2, is analytic in the whole complexu-plane except for the branch cut from – ∞ to –u0≈ – 0.03585, the latter branching point –u0being associated with the Yang-Lee edge singularity. Under this assumption, the values of$$ {\Gamma}_{11}^1 $$ Γ 11 1 at any complexuare expressed through the discontinuity across the branch cut. We suggest approximation for this discontinuity which accounts for singular expansion of$$ {\Gamma}_{11}^1 $$ Γ 11 1 near the Yang-Lee branching point, as well as its known asymptotic atu →+∞. The resulting dispersion relation agrees well with known exact data, and with numerics obtained via Truncated Free Fermion Space Approach. This work is part of extended project of studying the S-matrix of the Ising Field Theory in a magnetic field. 
    more » « less