skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tunneling Spectroscopy in Carbon Nanotube-Hexagonal Boron Nitride-Carbon Nanotube Heterojunctions
Award ID(s):
1808635
PAR ID:
10300879
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nano Letters
Volume:
20
Issue:
9
ISSN:
1530-6984
Page Range / eLocation ID:
6712 to 6718
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Carbon nanotube (CNT) field-effect transistors (CNFETs) promise significant energy efficiency benefits versus today's silicon-based FETs. Yet despite this promise, complementary (CMOS) CNFET analog circuitry has never been experimentally demonstrated. Here we show the first reported demonstration of full CNFET CMOS analog circuits. For characterization, we fabricate analog building block circuits: multiple instances of two-stage op-amps. These CNFET CMOS op-amps achieve gain >700 (maximum derivative of output voltage with respect to differential input voltage), operate at a scaled sub- 500 mV supply voltage, achieve high linearity (even when operating at these scaled voltages), and are robust over time (minimal drift over >10,000 cycled measurements over 12 hours). Additionally, we demonstrate a front-end analog sub-system that integrates a CNFET-based breath sensor with an analog sensor interface circuit (transimpedance amplifier followed by a voltage follower to convert resistance change of the chemoresistive CNFET sensor into a buffered output voltage). These experimental demonstrations are the first reports of CNFET CMOS analog functionality that is essential for a future CNT CMOS technology. 
    more » « less