skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anaerobic Carbon Monoxide Uptake by Microbial Communities in Volcanic Deposits at Different Stages of Successional Development on O-yama Volcano, Miyake-jima, Japan
Research on Kilauea and O-yama Volcanoes has shown that microbial communities and their activities undergo major shifts in response to plant colonization and that molybdenum-dependent CO oxidizers (Mo-COX) and their activities vary with vegetation and deposit age. Results reported here reveal that anaerobic CO oxidation attributed to nickel-dependent CO oxidizers (Ni-COX) also occurs in volcanic deposits that encompass different developmental stages. Ni-COX at three distinct sites responded rapidly to anoxia and oxidized CO from initial concentrations of about 10 ppm to sub-atmospheric levels. CO was also actively consumed at initial 25% concentrations and 25 °C, and during incubations at 60 °C; however, uptake under the latter conditions was largely confined to an 800-year-old forested site. Analyses of microbial communities based on 16S rRNA gene sequences in treatments with and without 25% CO incubated at 25 °C or 60 °C revealed distinct responses to temperature and CO among the sites and evidence for enrichment of known and potentially novel Ni-COX. The results collectively show that CO uptake by volcanic deposits occurs under a wide range of conditions; that CO oxidizers in volcanic deposits may be more diverse than previously imagined; and that Ni-dependent CO oxidizers might play previously unsuspected roles in microbial succession.  more » « less
Award ID(s):
1634239
PAR ID:
10300898
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Microorganisms
Volume:
9
Issue:
1
ISSN:
2076-2607
Page Range / eLocation ID:
12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Brazelton, William J. (Ed.)
    The flanking regions of Guaymas Basin, a young marginal rift basin located in the Gulf of California, are covered with thick sediment layers that are hydrothermally altered due to magmatic intrusions. To explore environmental controls on microbial community structure in this complex environment, we analyzed site- and depth-related patterns of microbial community composition (bacteria, archaea, and fungi) in hydrothermally influenced sediments with different thermal conditions, geochemical regimes, and extent of microbial mats. We compared communities in hot hydrothermal sediments (75-100°C at ~40 cm depth) covered by orange-pigmented Beggiatoaceae mats in the Cathedral Hill area, temperate sediments (25-30°C at ~40 cm depth) covered by yellow sulfur precipitates and filamentous sulfur oxidizers at the Aceto Balsamico location, hot sediments (>115°C at ~40 cm depth) with orange-pigmented mats surrounded by yellow and white mats at the Marker 14 location, and background, non-hydrothermal sediments (3.8°C at ~45 cm depth) overlain with ambient seawater. Whereas bacterial and archaeal communities are clearly structured by site-specific in-situ thermal gradients and geochemical conditions, fungal communities are generally structured by sediment depth. Unexpectedly, chytrid sequence biosignatures are ubiquitous in surficial sediments whereas deeper sediments contain diverse yeasts and filamentous fungi. In correlation analyses across different sites and sediment depths, fungal phylotypes correlate to each other to a much greater degree than Bacteria and Archaea do to each other or to fungi, further substantiating that site-specific in-situ thermal gradients and geochemical conditions that control bacteria and archaea do not extend to fungi. 
    more » « less
  2. Abstract Co-contamination of hydrocarbons with heavy metals in soils often complicates and hinders bioremediation. A comprehensive characterization of site-specific degraders at contaminated sites can help determine if in situ bioremediation processes are sufficient. This study aimed to identify differences in benzene and toluene degradation rates and the microbial communities enriched under aerobic conditions when different concentrations of Cd and Pb are introduced. Microcosms were used to study the degradation of 0.23 mM benzene or 0.19 mM toluene under various concentrations of Pb (up to 240 µM) and Cd (up to 440 µM). Soil collected from a stormwater retention basin receiving runoff from a large parking lot was utilized to seed the microcosms. The hydrocarbon degradation time and rates were measured. After further rounds of amendment and degradation of benzene and toluene, 16S rRNA gene amplicon sequencing and quantitative PCR were used to ascertain the microbial communities enriched under the various concentrations of the heavy metals. The initial degradation time for toluene and benzene was 7 to 9 days and 10 to 13 days, respectively. Degradation rates were similar for each hydrocarbon despite the concentration and presence of metal co-contaminant, however, the enriched microbial communities under each condition differed. Microcosms without metal co-contaminant contained a diversity of putative benzene and toluene degrading bacteria. Cd strongly reduced the richness of the microbial communities. With higher levels of heavy metals, genera such asRalstonia,Cupriavidus,Azoarcus, andRhodococcusbecame more dominant under various conditions. The study finds that highly efficient benzene- and toluene-degrading consortia can develop under variations of heavy metal co-contamination, but the consortia are dependent on the heavy metal type and concentrations. 
    more » « less
  3. Abstract A challenge in monitoring long‐dormant volcanoes is to discover early signs of reawakening. Mineral springs on Taranaki volcano (2,518 m, New Zealand) have elevated carbonate concentrations, δ13CDIC ∼ −5‰ (VPDB) and He isotopes from 5.13 to 5.92 RA, indicating a magmatic volatile source. Stable isotopes demonstrate water recharge occurs near the volcano's summit. Volatile anions and silica are low in a cold (5oC) flank spring at 1,000 m a.s.l., yet elevated in warm springs (25–32oC) associated with travertine deposits at 250–300 m, suggesting a weak hydrothermal component along the flow path. Tritium dating of the cold spring water yields a mean residence time of 7.8 years. This short residence time and magmatic volatile signatures suggest magmatic CO2persistently flushes Taranaki's upper edifice. Cold spring geochemistry thus reveals volcanic activity at this dormant volcano that otherwise lacks obvious geophysical signs of unrest. 
    more » « less
  4. IntroductionThe 1980 eruption of Mount St. Helens had devastating effects above and belowground in forested montane ecosystems, including the burial and destruction of soil microbes. Soil microbial propagules and legacies in recovering ecosystems are important for determining post-disturbance successional trajectories. Soil microorganisms regulate nutrient cycling, interact with many other organisms, and therefore may support successional pathways and complementary ecosystem functions, even in harsh conditions. Historic forest management methods, such as old-growth and clearcut regimes, and locations of historic short-term gopher enclosures (Thomomys talpoides), to evaluate community response to forest management practices and to examine vectors for dispersing microbial consortia to the surface of the volcanic landscape. These biotic interactions may have primed ecological succession in the volcanic landscape, specifically Bear Meadow and the Pumice Plain, by creating microsite conditions conducive to primary succession and plant establishment. Methods and resultsUsing molecular techniques, we examined bacterial, fungal, and AMF communities to determine how these variables affected microbial communities and soil properties. We found that bacterial/archaeal 16S, fungal ITS2, and AMF SSU community composition varied among forestry practices and across sites with long-term lupine plots and gopher enclosures. The findings also related to detected differences in C and N concentrations and ratios in soil from our study sites. Fungal communities from previously clearcut locations were less diverse than in gopher plots within the Pumice Plain. Yet, clearcut meadows harbored fewer ancestral AM fungal taxa than were found within the old-growth forest. DiscussionBy investigating both forestry practices and mammals in microbial dispersal, we evaluated how these interactions may have promoted revegetation and ecological succession within the Pumice Plains of Mount St. Helens. In addition to providing evidence about how dispersal vectors and forest structure influence post-eruption soil microbiomes, this project also informs research and management communities about belowground processes and microbial functional traits in facilitating succession and ecosystem function. 
    more » « less
  5. Volcanic debris avalanches are among the largest and most severe disturbances known. Therefore, studying processes of ecosystem formation on the deposits emplaced by these landslides provides insights into the patterns of community assembly after the most severe disruptions. In this review we synthesize findings of 60 vegetation studies from 15 volcanic debris avalanche deposits. One of the most impactful drivers of the speed with which communities reestablish is the climatic region in which the debris avalanche occurs. The fastest recovery occurs in the tropics and slowest in the boreal latitudes. The existence of biotic legacies, or remnant soils or biota from the previous communities accelerates community establishment, and these legacies are found more frequently on smaller debris avalanche deposits. Where these legacies exist, recovery proceeds many times more rapidly than in primary successional areas of the deposits. Similar patterns across mountains are observed in the species guilds that arrive and become established on the deposits with nitrogen fixers and early seral species doing particularly well. Complete recovery, meaning that communities match those of surrounding undisturbed areas, from this extreme class of disturbance takes a very long time, decades in the tropics and centuries to millennia at higher latitudes. Secondary disturbances are frequent and often reshape the direction of community development. Understanding of community development on debris avalanches would be greatly expanded if continuous time series over decadal to millennial scales were available on more disturbances. This could be achieved through repeat monitoring of permanent plots, remote sensing, or use of pollen core analysis. Such studies may enable inference about whether long-lasting community differences from surrounding areas are due to alternative stable states or simply the slow turnover of long-lived species on volcanic debris avalanches. Further study of these topics will foster better management of human disturbed landscapes, such as those from large-scale mining. 
    more » « less