Recent reports indicate that there are less than 1900 (0.6%) Native American undergraduate and graduate engineering students nationwide (Yoder, 2016). Although Native Americans are underrepresented in the field of engineering, there is very little research that explores the contributing factors. The purpose of our exploratory research is to identify the barriers, supports, and personal strengths that Native American engineering students identify as being influential in developing their career interests and aspirations in engineering. Informed by research in Social Cognitive Career Theory (SCCT; Lent, Brown, & Hackett, 1994, 2000), we conducted an online survey to assess the motivational variables that guide the career thinking and advancement of students preparing to enter the field of engineering. Instrumentation included Mapping Vocational Challenges (Lapan & Turner, 2000, 2009, 2014), Perceptions of Barriers (McWhirter, 1997), the Structured Career Development Inventory (Lapan & Turner, 2006; Turner et al., 2006), the Career-Related Parent Support Scale (Turner, Alliman-Brissett, Lapan, Udipi, & Ergun, 2003), and the Assessment of Campus Climate for Underrepresented Groups (Rankin, 2001), which were used to measure interests, goals, personal strengths and internal and external barriers and supports. Participants (N=23) consisted of graduate (≈25%) and undergraduate (≈75%) Native American engineering students. Their survey responses indicated thatmore »
Impact of COVID Transition to Remote Learning on Engineering Self-Efficacy and Outcome Expectations
The outbreak of COVID-19 and sudden transition to remote learning brought many changes and challenges to higher education campuses across the nation. This paper evaluates the impact of the transition to remote learning on the engineering-related social cognitions of self-efficacy (belief in one’s abilities to successfully accomplish tasks in engineering) and outcome expectations (beliefs about the consequences of performing engineering behaviors). These social cognitions can be attributed to important academic and career outcomes, such as the development of STEM interests and goals (Lent et al., 2019) and may be especially important in the success of women in non-traditional fields such as engineering.
As an extension to a NSF RIEF (Research Initiation in Engineering Formation) study evaluating engineering social cognitions, students in 8 engineering classes were surveyed at the beginning of Spring 2020 semester (N=224), shortly after the transition to remote learning (N = 190), and at the end of the semester (N=101). The classes surveyed included a common early engineering class at the sophomore level (Engineering Statics) and required junior level courses in different departments. The students were surveyed using reliable and validated instruments to measure engineering self-efficacy (Lent et al. 2005, Frantz et al. 2011), engineering outcome expectations (Lent more »
- Award ID(s):
- 1926480
- Publication Date:
- NSF-PAR ID:
- 10301122
- Journal Name:
- 2021 ASEE Virtual Annual Conference
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
There is little research or understanding of curricular differences between two- and four-year programs, career development of engineering technology (ET) students, and professional preparation for ET early career professionals [1]. Yet, ET credentials (including certificates, two-, and four-year degrees) represent over half of all engineering credentials awarded in the U.S [2]. ET professionals are important hands-on members of engineering teams who have specialized knowledge of components and engineering systems. This research study focuses on how career orientations affect engineering formation of ET students educated at two-year colleges. The theoretical framework guiding this study is Social Cognitive Career Theory (SCCT). SCCT is a theory which situates attitudes, interests, and experiences and links self-efficacy beliefs, outcome expectations, and personal goals to educational and career decisions and outcomes [3]. Student knowledge of attitudes toward and motivation to pursue STEM and engineering education can impact academic performance and indicate future career interest and participation in the STEM workforce [4]. This knowledge may be measured through career orientations or career anchors. A career anchor is a combination of self-concept characteristics which includes talents, skills, abilities, motives, needs, attitudes, and values. Career anchors can develop over time and aid in shaping personal and career identity [6].more »
-
The Academy of Engineering Success (AcES), supported by an NSF S-STEM grant since 2016, employs literature-based, best practices to support and retain students in engineering. AcES students participate in a one-week summer bridge experience; a common fall semester course focused on professional development, time management and study skills, and career exploration; and a common spring semester course emphasizing the role of engineers in societal development. Students are also immersed in co-curricular activities with the goals of fostering feelings of institutional inclusion and belonging in engineering, providing academic support and student success skills, and professional development. AcES students participate in the GRIT, LAESE, and MSLQ surveys at the start and end of each fall semester and at the end of the spring semester each year. Focus group data is collected at the beginning, middle and end of each semester and one-on-one interviews occur at the start and end of each semester. The surveys provide a measure of students’ GRIT, general self-efficacy, engineering self-efficacy, test anxiety, math outcome efficacy, intrinsic value of learning, inclusion, career expectations, and coping efficacy. A previous study, based on an analysis of the 2017 AcES cohort survey responses, produced a surprising result. When the responses of AcESmore »
-
This paper describes an evidence based-practice paper to a formative response to the engineering faculty and students’ needs at Anonymous University. Within two weeks, the pandemic forced the vast majority of the 1.5 million faculty and 20 million students nationwide to transition all courses from face-to-face to entirely online. Never in the history of higher education has there been a concerted effort to adapt so quickly and radically, nor have we had the technology to facilitate such a rapid and massive change. At Anonymous University, over 700 engineering educators were racing to transition their courses. Many of those faculty had never experienced online course preparation, much less taught one synchronously or asynchronously. Faculty development centers and technology specialists across the university made a great effort to aid educators in this transition. These educators had questions about the best practices for moving online, how their students were affected, and the best ways to engage their students. However, these faculty’s detailed questions were answerable only by faculty peers’ experience, students’ feedback, and advice from experts in relevant engineering education research-based practices. This paper describes rapid, continuous, and formative feedback provided by the Engineering Education Faculty Group (EEFG) to provide an immediate responsemore »
-
Ko, A. K. (Ed.)There are significant participation gaps in computing, and the way to address these participation gaps lies not simply in getting students from underrepresented groups into a CS1 classroom, but supporting students to pursue their interest in computing further beyond CS1. There are many factors that may influence students’ pursuit of computing beyond introductory courses, including their sense that they can do what CS courses require of them (their self-efficacy) and positive emotional experiences in CS courses. When interest has been addressed in computing education, research has treated it mostly as an outcome of particular pedagogical approaches or curricula; what has not been studied is how students’ longer-term interest develops through more granular experiences that students have as they begin to engage with computing. In this paper, we present the results of a study designed to investigate how students’ interest in computing develops as a product of their momentary self-efficacy and affective experiences. Using a methodology that is relatively uncommon to computer science education—the experience sampling method, which involves frequently asking students brief, unobtrusive questions about their experiences—we surveyed CS1 students every week over the course of a semester to capture the nuances of their experiences. 74 CS1 students responded 14-18more »