Swimming at the microscale typically involves two modes of motion: mechanical propulsion and propulsion due to field interactions. During mechanical propulsion, particles swim by reconfiguring their geometry. When propelled by field interactions, body forces such as phoretic interactions drive mobility. In this work, we employ slender-body theory to explore how a bent rod actuator propels due to a mechanical mode of swimming via hinge articulations and due to a chemical mode of swimming via diffusiophoretic interactions with a solute field. Although previous theoretical studies have examined mechanical and chemical modes of swimming in isolation, the simultaneous investigation of both modes has remained unexplored. For the mechanical mode of swimming, our calculations, both numerical and analytical, recover Purcell’s scallop theorem and show that the bent rod actuator experiences zero net displacement during reciprocal motion. Additionally, we calculate the trajectories traced by a bent rod actuator under a non-reciprocal hinge articulation, revealing that these trajectories are influenced by the amplitude of the hinge articulation, geometric asymmetry, and the angular velocity distribution between the two arms of the bent rod actuator. We provide intuitive explanations for these effects using free-body diagrams. Furthermore, we explore the motion induced by simultaneous hinge articulations and self-diffusiophoresis. We observe that hinge articulations can modify the effective phoretic forces and torques acting on the bent rod actuator, either supporting or impeding propulsion. Additionally, during self-diffusiophoretic propulsion, reciprocal hinge articulations no longer result in zero net displacement. In summary, our findings chart a new direction for designing micron-sized objects that harness both mechanical and chemical modes of propulsion synchronously, offering a mechanism to enact control over trajectories.
more »
« less
Cool your jets: biological jet propulsion in marine invertebrates
ABSTRACT Pulsatile jet propulsion is a common swimming mode used by a diverse array of aquatic taxa from chordates to cnidarians. This mode of locomotion has interested both biologists and engineers for over a century. A central issue to understanding the important features of jet-propelling animals is to determine how the animal interacts with the surrounding fluid. Much of our knowledge of aquatic jet propulsion has come from simple theoretical approximations of both propulsive and resistive forces. Although these models and basic kinematic measurements have contributed greatly, they alone cannot provide the detailed information needed for a comprehensive, mechanistic overview of how jet propulsion functions across multiple taxa, size scales and through development. However, more recently, novel experimental tools such as high-speed 2D and 3D particle image velocimetry have permitted detailed quantification of the fluid dynamics of aquatic jet propulsion. Here, we provide a comparative analysis of a variety of parameters such as efficiency, kinematics and jet parameters, and review how they can aid our understanding of the principles of aquatic jet propulsion. Research on disparate taxa allows comparison of the similarities and differences between them and contributes to a more robust understanding of aquatic jet propulsion.
more »
« less
- PAR ID:
- 10301244
- Date Published:
- Journal Name:
- Journal of Experimental Biology
- Volume:
- 224
- Issue:
- 12
- ISSN:
- 0022-0949
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Photosynthesis in eukaryotes first arose through phagocytotic processes wherein an engulfed cyanobacterium was not digested, but instead became a permanent organelle. Other photosynthetic lineages then arose when eukaryotic cells engulfed other already photosynthetic eukaryotic cells. Some of the resulting lineages subsequently lost their ability for phagocytosis, while many others maintained the ability to do both processes. These mixotrophic taxa have more complicated ecological roles, in that they are both primary producers and consumers that can shift more towards producing the organic matter that forms the base of aquatic food chains, or towards respiring and releasing CO 2 . We still have much to learn about which taxa are predatory mixotrophs as well as about the physiological consequences of this lifestyle, in part, because much of the diversity of unicellular eukaryotes in aquatic ecosystems remains uncultured. Here, we discuss existing methods for studying predatory mixotrophs, their individual biases, and how single-cell approaches can enhance knowledge of these important taxa. The question remains what the gold standard should be for assigning a mixotrophic status to ill-characterized or uncultured taxa—a status that dictates how organisms are incorporated into carbon cycle models and how their ecosystem roles may shift in future lakes and oceans. This article is part of a discussion meeting issue ‘Single cell ecology’.more » « less
-
null (Ed.)Some micro-organisms and artificial micro-swimmers propel at low Reynolds numbers (Re) via the interaction of their flexible appendages with the surrounding fluid. While their locomotion has been extensively studied with a Newtonian fluid assumption, in realistic biological environments these micro-swimmers invariably encounter rheologically complex fluids. In particular, many biological fluids such as blood and different types of mucus have shear-thinning viscosities. The influence of this ubiquitous non-Newtonian rheology on the performance of flexible swimmers remains largely unknown. Here, we present a first study to examine how shear-thinning rheology alters the fluid-structure interaction and hence the propulsion performance of elastic swimmers at low Re. Via a simple elastic swimmer actuated magnetically, we demonstrate that shear-thinning rheology can either enhance or hinder elastohydrodynamic propulsion, depending on the intricate interplay between elastic and viscous forces as well as the magnetic actuation. We also use a reduced-order model to elucidate the mechanisms underlying the enhanced and hindered propulsion observed in different physical regimes. These results and improved understanding could guide the design of flexible micro-swimmers in non-Newtonian fluids.more » « less
-
Abstract Electrohydrodynamic (EHD) printing is a versatile process that can be used to pattern high-resolution droplets and fibers through the deposition of an electrified jet. This highly complex process utilizes a coupled hydrodynamic and electrostatic mechanism to drive the fluid flow. While it has many biomedical, electronic, and filtration applications, its widescale usage is hampered by a lack of detailed understanding of the jetting physics that enables this process. In this paper, a numerical model is developed and validated to explore the design space of the EHD jetting process, from Taylor cone formation to jet impingement onto the substrate, and analyze the key geometrical and process parameters that yield high-resolution structures. This numerical model applies to various process parameters, material properties, and environmental factors and can accurately capture jet evolution, radius, and flight time. It can be used to better inform design decisions when using EHD processes with distinct resolution requirements.more » « less
-
The impact of fluid drops on solid substrates has widespread interest in many industrial coating and spraying applications, such as ink-jet printing and agricultural pesticide sprays. Many of the fluids used in these applications are non-Newtonian, that is they contain particulate or polymeric additives that strongly modify their flow behaviour. While a large body of experimental and theoretical work has been done to understand the impact dynamics of Newtonian fluids, we as a community have much progress to make to understand how these dynamics are modified when the impact fluid has non-Newtonian rheology. In this review, we outline recent experimental, theoretical, and computational advances in the study of impact dynamics of complex fluids on solid surfaces. Here, we provide an overview of this field that is geared towards a multidisciplinary audience. Our discussion is segmented by two principal material constitutions: polymeric fluids and particulate suspensions. Throughout, we highlight promising future directions, as well as ongoing experimental and theoretical challenges in the field.more » « less
An official website of the United States government

