skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improving Cyberbullying Detection with User Interaction
Cyberbullying, identified as intended and repeated online bullying behavior, has become increasingly prevalent in the past few decades. Despite the significant progress made thus far, the focus of most existing work on cyberbullying detection lies in the independent content analysis of different comments within a social media session. We argue that such leading notions of analysis suffer from three key limitations: they overlook the temporal correlations among different comments; they only consider the content within a single comment rather than the topic coherence across comments; they remain generic and exploit limited interactions between social media users. In this work, we observe that user comments in the same session may be inherently related, e.g., discussing similar topics, and their interaction may evolve over time. We also show that modeling such topic coherence and temporal interaction are critical to capture the repetitive characteristics of bullying behavior, thus leading to better predicting performance. To achieve the goal, we first construct a unified temporal graph for each social media session. Drawing on recent advances in graph neural network, we then propose a principled graph-based approach for modeling the temporal dynamics and topic coherence throughout user interactions. We empirically evaluate the effectiveness of our approach with the tasks of session-level bullying detection and comment-level case study. Our code is released to public.  more » « less
Award ID(s):
2036127
PAR ID:
10301321
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Web Conference
Page Range / eLocation ID:
496 to 506
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Cyberbullying is rapidly becoming one of the most serious online risks for adolescents. This has motivated work on machine learning methods to automate the process of cyberbullying detection, which have so far mostly viewed cyberbullying as one-off incidents that occur at a single point in time. Comparatively less is known about how cyberbullying behavior occurs and evolves over time. This oversight highlights a crucial open challenge for cyberbullying-related research, given that cyberbullying is typically defined as intentional acts of aggression via electronic communication that occur repeatedly and persistently . In this article, we center our discussion on the challenge of modeling temporal patterns of cyberbullying behavior. Specifically, we investigate how temporal information within a social media session, which has an inherently hierarchical structure (e.g., words form a comment and comments form a session), can be leveraged to facilitate cyberbullying detection. Recent findings from interdisciplinary research suggest that the temporal characteristics of bullying sessions differ from those of non-bullying sessions and that the temporal information from users’ comments can improve cyberbullying detection. The proposed framework consists of three distinctive features: (1) a hierarchical structure that reflects how a social media session is formed in a bottom-up manner; (2) attention mechanisms applied at the word- and comment-level to differentiate the contributions of words and comments to the representation of a social media session; and (3) the incorporation of temporal features in modeling cyberbullying behavior at the comment-level. Quantitative and qualitative evaluations are conducted on a real-world dataset collected from Instagram, the social networking site with the highest percentage of users reporting cyberbullying experiences. Results from empirical evaluations show the significance of the proposed methods, which are tailored to capture temporal patterns of cyberbullying detection. 
    more » « less
  2. Cyberbullying has become one of the most pressing online risks for young people and has raised serious concerns in society. The emerging literature identifies cyberbullying as repetitive acts that occur over time rather than one-off incidents. Yet, there has been relatively little work to model the hierarchical structure of social media sessions and the temporal dynamics of cyberbullying in online social network sessions. We propose a hierarchical attention network for cyberbullying detection that takes these aspects of cyberbullying into account. The primary distinctive characteristics of our approach include: (i) a hierarchical structure that mirrors the structure of a social media session; (ii) levels of attention mechanisms applied at the word and comment level, thereby enabling the model to pay different amounts of attention to words and comments, depending on the context; and (iii) a cyberbullying detection task that also predicts the interval of time between two adjacent comments. These characteristics allow the model to exploit the commonalities and differences across these two tasks to improve the performance of cyberbullying detection. Experiments on a real-world dataset from Instagram, the social media platform on which the highest percentage of users have reported experiencing cyberbullying, reveal that the proposed architecture outperforms the state-of-the-art method. 
    more » « less
  3. Social media discourse involves people from different backgrounds, beliefs, and motives. Thus, often such discourse can devolve into toxic interactions. Generative Models, such as Llama and ChatGPT, have recently exploded in popularity due to their capabilities in zero-shot question-answering. Because these models are increasingly being used to ask questions of social significance, a crucial research question is whether they can understand social media dynamics. This work provides a critical analysis regarding generative LLM’s ability to understand language and dynamics in social contexts, particularly considering cyberbullying and anti-cyberbullying (posts aimed at reducing cyberbullying) interactions. Specifically, we compare and contrast the capabilities of different large language models (LLMs) to understand three key aspects of social dynamics: language, directionality, and the occurrence of bullying/anti-bullying messages. We found that while fine-tuned LLMs exhibit promising results in some social media understanding tasks (understanding directionality), they presented mixed results in others (proper paraphrasing and bullying/anti-bullying detection). We also found that fine-tuning and prompt engineering mechanisms can have positive effects in some tasks. We believe that a understanding of LLM’s capabilities is crucial to design future models that can be effectively used in social applications. 
    more » « less
  4. null (Ed.)
    The element of repetition in cyberbullying behavior has directed recent computational studies toward detecting cyberbullying based on a social media session. In contrast to a single text, a session may consist of an initial post and an associated sequence of comments. Yet, emerging efforts to enhance the performance of session-based cyberbullying detection have largely overlooked unintended social biases in existing cyberbullying datasets. For example, a session containing certain demographic-identity terms (e.g., “gay” or “black”) is more likely to be classified as an instance of cyberbullying. In this paper, we first show evidence of such bias in models trained on sessions collected from different social media platforms (e.g., Instagram). We then propose a context-aware and model-agnostic debiasing strategy that leverages a reinforcement learning technique, without requiring any extra resources or annotations apart from a pre-defined set of sensitive triggers commonly used for identifying cyberbullying instances. Empirical evaluations show that the proposed strategy can simultaneously alleviate the impacts of the unintended biases and improve the detection performance. 
    more » « less
  5. Social media is a vital means for information-sharing due to its easy access, low cost, and fast dissemination characteristics. However, increases in social media usage have corresponded with a rise in the prevalence of cyberbullying. Most existing cyberbullying detection methods are supervised and, thus, have two key drawbacks: (1) The data labeling process is often labor-intensive and time-consuming; (2) Current labeling guidelines may not be generalized to future instances because of different language usage and evolving social networks. To address these limitations, this work introduces a principled approach for unsupervised cyberbullying detection. The proposed model consists of two main components: (1) A representation learning network that encodes the social media session by exploiting multi-modal features, e.g., text, network, and time. (2) A multi-task learning network that simultaneously fits the time intervals and estimates the bullying likelihood based on a Gaussian Mixture Model. The proposed model jointly optimizes the parameters of both components to overcome the shortcomings of decoupled training. Our core contribution is an unsupervised cyberbullying detection model that not only experimentally outperforms the state-of-the-art unsupervised models, but also achieves competitive performance compared to supervised models. 
    more » « less