skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Discriminative Pattern Mining for Runtime Security Enforcement of Cyber-Physical Point-of-Care Medical Technology
Point-of-care diagnostics are a key technology for various safety-critical applications from providing diagnostics in developing countries lacking adequate medical infrastructure to fight infectious diseases to screening procedures for border protection. Digital microfluidics biochips are an emerging technology that are increasingly being evaluated as a viable platform for rapid diagnosis and point-of-care field deployment. In such a technology, processing errors are inherent. Cyber-physical digital biochips offer higher reliability through the inclusion of automated error recovery mechanisms that can reconfigure operations performed on the electrode array. Recent research has begun to explore security vulnerabilities of digital microfluidic systems. This paper expands previous work that exploits vulnerabilities due to implicit trust in the error recovery mechanism. In this work, a discriminative data mining approach is introduced to identify frequent bioassay operations that can be cyber-physically attested for runtime security protection.  more » « less
Award ID(s):
1837472
PAR ID:
10301322
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC)
Page Range / eLocation ID:
1066 to 1072
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This report discusses Digital Forensics and Cyber-Security and different vulnerabilities that put the users at risk of compromising their sensitive data and making it available to attackers. With the raising of new threats aiming at technology, some people are not aware of hackers stealing their data. This study will discuss what Cyber-Security is and how many people are aware of what it all entails. This study will also recommendations on how to recognize attacks and learn basic terms to help inform the public. The study utilizes surveys of students from Hampton University so the authors can make the proper analysis and recommendations regarding the issue. 
    more » « less
  2. The adoption of digital technology in industrial control systems (ICS) enables improved control over operation, ease of system diagnostics and reduction in cost of maintenance of cyber physical systems (CPS). However, digital systems expose CPS to cyber-attacks. The problem is grave since these cyber-attacks can lead to cascading failures affecting safety in CPS. Unfortunately, the relationship between safety events and cyber-attacks in ICS is ill-understood and how cyber-attacks can lead to cascading failures affecting safety. Consequently, CPS operators are ill-prepared to handle cyber-attacks on their systems. In this work, we envision adopting Explainable AI to assist CPS oper-ators in analyzing how a cyber-attack can trigger safety events in CPS and then interactively determining potential approaches to mitigate those threats. We outline the design of a formal framework, which is based on the notion of transition systems, and the associated toolsets for this purpose. The transition system is represented as an AI Planning problem and adopts the causal formalism of human reasoning to asssit CPS operators in their analyses. We discuss some of the research challenges that need to be addressed to bring this vision to fruition. 
    more » « less
  3. Su, C.; Gritzalis, D.; Piuri, V. (Ed.)
    Many cyber-physical systems (CPS) are critical infrastructure. Security attacks on these critical systems can have catastrophic consequences, putting human lives at risk. Consequently, it is very important to pace CPS systems to red-teaming/blue teaming exercises to understand vulnerabilities and the progression/impact of cyber attacks on them. Since it is not always prudent to conduct such security exercises on live CPS, researchers use CPS testbeds to conduct security-related experiments. Often, such testbeds are very expensive. Since attack scripts used in red-teaming/blue-teaming exercises are, in the strictest sense of the term, malicious in nature, there is a need to protect the testbed itself from these attack experiments that have the potential to go awry. Moreover, when multiple experiments are conducted on the same testbed, there is a need to maintain isolation among these experiments so that no experiment can accidentally or maliciously affect/compromise others. In this work, we describe a novel security architecture and framework to ensure protection of security-related experiments on a CPS testbed and at the same time support secure communication services among simultaneously running experiments based on well-formulated access control policies. 
    more » « less
  4. Diagnostic approaches that combine the high sensitivity and specificity of laboratory-based digital detection with the ease of use and affordability of point-of-care (POC) technologies could revolutionize disease diagnostics. This is especially true in infectious disease diagnostics, where rapid and accurate pathogen detection is critical to curbing the spread of disease. We have pioneered an innovative label-free digital detection platform that utilizes Interferometric Reflectance Imaging Sensor (IRIS) technology. IRIS leverages light interference from an optically transparent thin film, eliminating the need for complex optical resonances to enhance the signal by harnessing light interference and the power of signal averaging in shot-noise-limited operation In our latest work, we have further improved our previous 'Single-Particle' IRIS (SP-IRIS) technology by allowing the construction of the optical signature of target nanoparticles (whole virus) from a single image. This new platform, 'Pixel-Diversity' IRIS (PD-IRIS), eliminated the need for z-scan acquisition, required in SP-IRIS, a time-consuming and expensive process, and made our technology more applicable to POC settings. Using PD-IRIS, we quantitatively detected the Monkeypox virus (MPXV), the etiological agent for Monkeypox (Mpox) infection. MPXV was captured by anti-A29 monoclonal antibody (mAb 69-126-3) on Protein G spots on the sensor chips and were detected at a limit-of-detection (LOD) - of 200 PFU/mL (∼3.3 aM). PD-IRIS was superior to the laboratory-based ELISA (LOD - 1800 PFU/mL) used as a comparator. The specificity of PD-IRIS in MPXV detection was demonstrated using Herpes simplex virus, type 1 (HSV-1), and Cowpox virus (CPXV). This work establishes the effectiveness of PD-IRIS and opens possibilities for its advancement in clinical diagnostics of Mpox at POC. Moreover, PD-IRIS is a modular technology that can be adapted for the multiplex detection of pathogens for which high-affinity ligands are available that can bind their surface antigens to capture them on the sensor surface. 
    more » « less
  5. In recent years, there has been a growing interest in so-called smart cities. These cities use technology to connect and enhance the lives of their citizens. Smart cities use many Internet of Things (loT) devices, such as sensors and video cameras, that are interconnected to provide constant feedback and up-to-date information on everything that is happening. Despite the benefits of these cities, they introduce a numerous new vulnerabilities as well. These smart cities are now susceptible to cyber-attacks that aim to “alter, disrupt, deceive, degrade, or destroy computer systems.” Through the use of an educational and research-based loT test-bed with multiple networking layers and heterogeneous devices connected to simultaneously support networking research, anomaly detection, and security principles, we can pinpoint some of these vulnerabilities. This work will contribute potential solutions to these vulnerabilities that can hopefully be replicated in smart cities around the world. Specifically, in the transportation section of our educational smart city several vulnerabilities in the signal lights, street lights, and the cities train network were discovered. To conduct this research two scenarios were developed. These consisted of inside the network security and network perimeter security. For the latter we were able to find extensive vulnerabilities that would allow an attacker to map the entire smart city sub-network. Solutions to this problem are outlined that utilize an Intrusion Detection System and Port Mirroring. However, while we were able to exploit the city's Programmable Logic Controller (PLC) once inside the network, it was found that due to dated Supervisory Control and Data Acquisition (SCADA) systems, there were almost no solutions to these exploits. 
    more » « less