skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 9:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.

Title: Area Not Geographic Isolation Mediates Biodiversity Responses of Alpine Refugia to Climate Change
Climate refugia, where local populations of species can persist through periods of unfavorable regional climate, play a key role in the maintenance of regional biodiversity during times of environmental change. However, the ability of refugia to buffer biodiversity change may be mediated by the landscape context of refugial habitats. Here, we examined how plant communities restricted to refugial sky islands of alpine tundra in the Colorado Rockies are changing in response to rapid climate change in the region (increased temperature, declining snowpack, and earlier snow melt-out) and if these biodiversity changes are mediated by the area or geographic isolation of the sky island. We resampled plant communities in 153 plots at seven sky islands distributed across the Colorado Rockies at two time points separated by 12 years (2007/2008–2019/2020) and found changes in taxonomic, phylogenetic, and functional diversity over time. Specifically, we found an increase in species richness, a trend toward increased phylogenetic diversity, a shift toward leaf traits associated with the stress-tolerant end of leaf economics spectrum (e.g., lower specific leaf area, higher leaf dry matter content), and a decrease in the functional dispersion of specific leaf area. Importantly, these changes were partially mediated by refugial area but not by geographic isolation, suggesting that dispersal from nearby areas of tundra does not play a strong role in mediating these changes, while site characteristics associated with a larger area (e.g., environmental heterogeneity, larger community size) may be relatively more important. Taken together, these results suggest that considering the landscape context (area and geographic isolation) of refugia may be critical for prioritizing the conservation of specific refugial sites that provide the most conservation value.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Frontiers in Ecology and Evolution
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The integration of ecological niche modelling into phylogeographic analyses has allowed for the identification and testing of potential refugia under a hypothesis‐based framework, where the expected patterns of higher genetic diversity in refugial populations and evidence of range expansion of nonrefugial populations are corroborated with empirical data. In this study, we focus on a montane‐restricted cryophilic harvestman,Sclerobunus robustus, distributed throughout the heterogeneous Southern Rocky Mountains and Intermontane Plateau of southwestern North America. We identified hypothetical refugia using ecological niche models (ENMs) across three time periods, corroborated these refugia with population genetic methods using double‐digest RAD‐seq data and conducted population‐level phylogenetic and divergence dating analyses. ENMs identify two large temporally persistent regions in the mid‐latitude highlands. Genetic patterns support these two hypothesized refugia with higher genetic diversity within refugial populations and evidence for range expansion in populations found outside hypothesized refugia. Phylogenetic analyses identify five to six genetically divergent, geographically cohesive clades ofS. robustus. Divergence dating analyses suggest that these separate refugia date to the Pliocene and that divergence between clades pre‐dates the late Pleistocene glacial cycles, while diversification within clades was likely driven by these cycles. Population genetic analyses reveal effects of both isolation by distance (IBD) and isolation by environment (IBE), with IBD more important in the continuous mountainous portion of the distribution, while IBE was stronger in the populations inhabiting the isolated sky islands of the south. Using model‐based coalescent approaches, we find support for postdivergence migration between clades from separate refugia.

    more » « less
  2. Abstract

    The paradigm of past climate-driven range shifts structuring the distribution of marine intraspecific biodiversity lacks replication in biological models exposed to comparable limiting conditions in independent regions. This may lead to confounding effects unlinked to climate drivers. We aim to fill in this gap by asking whether the global distribution of intraspecific biodiversity of giant kelp (Macrocystis pyrifera) is explained by past climate changes occurring across the two hemispheres. We compared the species’ population genetic diversity and structure inferred with microsatellite markers, with range shifts and long-term refugial regions predicted with species distribution modelling (SDM) from the last glacial maximum (LGM) to the present. The broad antitropical distribution ofMacrocystis pyriferais composed by six significantly differentiated genetic groups, for which current genetic diversity levels match the expectations of past climate changes. Range shifts from the LGM to the present structured low latitude refugial regions where genetic relics with higher and unique diversity were found (particularly in the Channel Islands of California and in Peru), while post-glacial expansions following ~ 40% range contraction explained extensive regions with homogenous reduced diversity. The estimated effect of past climate-driven range shifts was comparable between hemispheres, largely demonstrating that the distribution of intraspecific marine biodiversity can be structured by comparable evolutionary forces across the global ocean. Additionally, the differentiation and endemicity of regional genetic groups, confers high conservation value to these localized intraspecific biodiversity hotspots of giant kelp forests.

    more » « less
  3. Abstract

    Climate change is already having profound effects on biodiversity, but climate change adaptation has yet to be fully incorporated into area‐based management tools used to conserve biodiversity, such as protected areas. One main obstacle is the lack of consensus regarding how impacts of climate change can be included in spatial conservation plans. We propose a climate‐smart framework that prioritizes the protection of climate refugia—areas of low climate exposure and high biodiversity retention—using climate metrics. We explore four aspects of climate‐smart conservation planning: (1) climate model ensembles; (2) multiple emission scenarios; (3) climate metrics; and (4) approaches to identifying climate refugia. We illustrate this framework in the Western Pacific Ocean, but it is equally applicable to terrestrial systems. We found that all aspects of climate‐smart conservation planning considered affected the configuration of spatial plans. The choice of climate metrics and approaches to identifying refugia have large effects in the resulting climate‐smart spatial plans, whereas the choice of climate models and emission scenarios have smaller effects. As the configuration of spatial plans depended on climate metrics used, a spatial plan based on a single measure of climate change (e.g., warming) will not necessarily be robust against other measures of climate change (e.g., ocean acidification). We therefore recommend using climate metrics most relevant for the biodiversity and region considered based on a single or multiple climate drivers. To include the uncertainty associated with different climate futures, we recommend using multiple climate models (i.e., an ensemble) and emission scenarios. Finally, we show that the approaches we used to identify climate refugia feature trade‐offs between: (1) the degree to which they are climate‐smart, and (2) their efficiency in meeting conservation targets. Hence, the choice of approach will depend on the relative value that stakeholders place on climate adaptation. By using this framework, protected areas can be designed with improved longevity and thus safeguard biodiversity against current and future climate change. We hope that the proposed climate‐smart framework helps transition conservation planning toward climate‐smart approaches.

    more » « less
  4. Abstract

    Climate adaptation strategies are being developed and implemented to protect biodiversity from the impacts of climate change. A well‐established strategy involves the identification and addition of new areas for conservation, and most countries agreed in 2010 to expand the global protected area (PA) network to 17% by 2020 (Aichi Biodiversity Target 11). Although great efforts to expand the global PA network have been made, the potential of newly established PAs to conserve biodiversity under future climate change remains unclear at the global scale. Here, we conducted the first global‐extent, country‐level assessment of the contribution of PA network expansion toward three key land prioritization approaches for biodiversity persistence under climate change: protecting climate refugia, protecting abiotic diversity, and increasing connectivity. These approaches avoid uncertainties of biodiversity predictions under climate change as well as the issue of undescribed species. We found that 51% of the countries created new PAs in locations with lower mean climate velocity (representing better climate refugia) and 58% added PAs in areas with higher mean abiotic diversity compared to the available, non‐human‐dominated lands not chosen for protection. However, connectivity among PAs declined in 53% of the countries, indicating that many new PAs were located far from existing PAs. Lastly, we identified potential improvements for climate adaptation, showing that 94% of the countries have the opportunity to improve in executing one or more approaches to conserve biodiversity. Most countries (60%) were associated with multiple opportunities, highlighting the need for integrative strategies that target multiple land protection approaches. Our results demonstrate that a global improvement in the protection of climate refugia, abiotic diversity, and connectivity of reserves is needed to complement land protection informed by existing and projected species distributions. Our study also provides a framework for countries to prioritize land protection for climate adaptation using publicly available data.

    more » « less
  5. Abstract Aim

    Refugial isolation during glaciation is an established driver of speciation; however, the opposing role of interglacial population expansion, secondary contact, and gene flow on the diversification process remains less understood. The consequences of glacial cycling on diversity are complex and especially so for archipelago species, which experience dramatic fluctuations in connectivity in response to both lower sea levels during glacial events and increased fragmentation during glacial recession. We test whether extended refugial isolation has led to the divergence of genetically and morphologically distinct species within Holarctic ermine (Mustela erminea), a small cosmopolitan carnivore species that harbours 34 extant subspecies, 14 of which are insular endemics.




    We use genetic sequences (complete mitochondrial genomes, four nuclear genes) from >100 ermine (stoats) and geometric morphometric data for >200 individuals (27 of the 34 extant subspecies) from across their Holarctic range to provide an integrative perspective on diversification and endemism across this complex landscape. Multiple species delimitation methods (iBPP,bPTP) assessed congruence between morphometric and genetic data.


    Our results support the recognition of at least three species within theM. ermineacomplex, coincident with three of four genetic clades, tied to diversification in separate glacial refugia. We found substantial geographic variation within each species, with geometric morphometric results largely consistent with historical infraspecific taxonomy.

    Main conclusions

    Phylogeographic structure mirrors patterns of diversification in other Holarctic species, with a major Nearctic‐Palearctic split, but with greater intraspecific morphological diversity. Recognition of insular endemic speciesM. haidarumis consistent with a deep history of refugial persistence and highlights the urgency of mindful management of island populations along North America's North Pacific Coast. Significant environmental modification (e.g. industrial‐scale logging, mining) has been proposed for a number of these islands, which may elevate the risk of extinction of insular palaeoendemics.

    more » « less