skip to main content


Title: Rapid cloud removal of dimethyl sulfide oxidation products limits SO 2 and cloud condensation nuclei production in the marine atmosphere
Oceans emit large quantities of dimethyl sulfide (DMS) to the marine atmosphere. The oxidation of DMS leads to the formation and growth of cloud condensation nuclei (CCN) with consequent effects on Earth’s radiation balance and climate. The quantitative assessment of the impact of DMS emissions on CCN concentrations necessitates a detailed description of the oxidation of DMS in the presence of existing aerosol particles and clouds. In the unpolluted marine atmosphere, DMS is efficiently oxidized to hydroperoxymethyl thioformate (HPMTF), a stable intermediate in the chemical trajectory toward sulfur dioxide (SO 2 ) and ultimately sulfate aerosol. Using direct airborne flux measurements, we demonstrate that the irreversible loss of HPMTF to clouds in the marine boundary layer determines the HPMTF lifetime ( τ HPMTF < 2 h) and terminates DMS oxidation to SO 2 . When accounting for HPMTF cloud loss in a global chemical transport model, we show that SO 2 production from DMS is reduced by 35% globally and near-surface (0 to 3 km) SO 2 concentrations over the ocean are lowered by 24%. This large, previously unconsidered loss process for volatile sulfur accelerates the timescale for the conversion of DMS to sulfate while limiting new particle formation in the marine atmosphere and changing the dynamics of aerosol growth. This loss process potentially reduces the spatial scale over which DMS emissions contribute to aerosol production and growth and weakens the link between DMS emission and marine CCN production with subsequent implications for cloud formation, radiative forcing, and climate.  more » « less
Award ID(s):
1829667 1801971
NSF-PAR ID:
10301522
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
42
ISSN:
0027-8424
Page Range / eLocation ID:
e2110472118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Oceanic emissions of dimethyl sulfide (CH3SCH3,DMS) have long been recognized to impact aerosol particle composition andsize, the concentration of cloud condensation nuclei (CCN), and Earth'sradiation balance. The impact of oceanic emissions of methanethiol(CH3SH, MeSH), which is produced by the same oceanic precursor as DMS,on the volatile sulfur budget of the marine atmosphere is largelyunconstrained. Here we present direct flux measurements of MeSH oceanicemissions using the eddy covariance (EC) method with a high-resolutionproton-transfer-reaction time-of-flight mass spectrometer (PTR-ToFMS)detector and compare them to simultaneous flux measurements of DMS emissionsfrom a coastal ocean site. Campaign mean mixing ratios of DMS and MeSH were72 ppt (28–90 ppt interquartile range) and 19.1 ppt (7.6–24.5 pptinterquartile range), respectively. Campaign mean emission fluxes of DMS (FDMS) and MeSH (FMeSH) were 1.13 ppt m s−1 (0.53–1.61 ppt m s−1 interquartile range) and 0.21 ppt m s−1 (0.10–0.31 ppt m s−1 interquartile range), respectively. Linear least squares regression of observed MeSH and DMS flux indicates the emissions are highly correlatedwith each other (R2=0.65) over the course of the campaign,consistent with a shared oceanic source. The campaign mean DMS to MeSH fluxratio (FDMS:FMeSH) was 5.5 ± 3.0, calculated from the ratio of 304 individual coincident measurements of FDMS and FMeSH. Measured FDMS:FMeSH was weakly correlated (R2=0.15) withocean chlorophyll concentrations, with FDMS:FMeSH reaching a maximumof 10.8 ± 4.4 during a phytoplankton bloom period. No other volatilesulfur compounds were observed by PTR-ToFMS to have a resolvable emissionflux above their flux limit of detection or to have a gas-phase mixing ratio consistently above their limit of detection during the study period,suggesting DMS and MeSH are the dominant volatile organic sulfur compoundsemitted from the ocean at this site. The impact of this MeSH emission source on atmospheric budgets of sulfurdioxide (SO2) was evaluated by implementing observed emissions in a coupled ocean–atmosphere chemical box model using a newly compiled MeSHoxidation mechanism. Model results suggest that MeSH emissions lead toafternoon instantaneous SO2 production of 2.5 ppt h−1, which results in a 43 % increase in total SO2 production compared to a casewhere only DMS emissions are considered and accounts for 30% of theinstantaneous SO2 production in the marine boundary layer at the meanmeasured FDMS and FMeSH. This contribution of MeSH to SO2production is driven by a higher effective yield of SO2 from MeSHoxidation and the shorter oxidation lifetime of MeSH compared to DMS. Thislarge additional source of marine SO2 has not been previouslyconsidered in global models of marine sulfur cycling. The field measurementsand modeling results presented here demonstrate that MeSH is an importantcontributor to volatile sulfur budgets in the marine atmosphere and must be measured along with DMS in order to constrain marine sulfur budgets. Thislarge additional source of marine–reduced sulfur from MeSH will contribute to particle formation and growth and CCN abundance in the marine atmosphere, with subsequent impacts on climate. 
    more » « less
  2. null (Ed.)
    Abstract. Long-range transport of biogenic emissions from the coastof Antarctica, precipitation scavenging, and cloud processing are the mainprocesses that influence the observed variability in Southern Ocean (SO)marine boundary layer (MBL) condensation nuclei (CN) and cloud condensationnuclei (CCN) concentrations during the austral summer. Airborne particlemeasurements on the HIAPER GV from north–south transects between Hobart,Tasmania, and 62∘ S during the Southern Ocean Clouds, RadiationAerosol Transport Experimental Study (SOCRATES) were separated into fourregimes comprising combinations of high and low concentrations of CCN andCN. In 5 d HYSPLIT back trajectories, air parcels with elevated CCNconcentrations were almost always shown to have crossed the Antarctic coast,a location with elevated phytoplankton emissions relative to the rest of theSO in the region south of Australia. The presence of high CCN concentrationswas also consistent with high cloud fractions over their trajectory,suggesting there was substantial growth of biogenically formed particlesthrough cloud processing. Cases with low cloud fraction, due to the presenceof cumulus clouds, had high CN concentrations, consistent with previouslyreported new particle formation in cumulus outflow regions. Measurementsassociated with elevated precipitation during the previous 1.5 d of theirtrajectory had low CCN concentrations indicating CCN were effectivelyscavenged by precipitation. A coarse-mode fitting algorithm was used todetermine the primary marine aerosol (PMA) contribution, which accounted for<20 % of CCN (at 0.3 % supersaturation) and cloud dropletnumber concentrations. Vertical profiles of CN and large particleconcentrations (Dp>0.07 µm) indicated that particleformation occurs more frequently above the MBL; however, the growth ofrecently formed particles typically occurs in the MBL, consistent with cloudprocessing and the condensation of volatile compound oxidation products. CCN measurements on the R/V Investigator as part of the second Clouds, Aerosols,Precipitation, Radiation and atmospheric Composition Over the southeRn Ocean(CAPRICORN-2) campaign were also conducted during the same period as theSOCRATES study. The R/V Investigator observed elevated CCN concentrations near Australia,likely due to continental and coastal biogenic emissions. The Antarcticcoastal source of CCN from the south, CCN sources from the midlatitudes, andenhanced precipitation sink in the cyclonic circulation between the Ferreland polar cells (around 60∘ S) create opposing latitudinalgradients in the CCN concentration with an observed minimum in the SObetween 55 and 60∘ S. The SOCRATES airbornemeasurements are not influenced by Australian continental emissions butstill show evidence of elevated CCN concentrations to the south of60∘ S, consistent with biogenic coastal emissions. In addition, alatitudinal gradient in the particle composition, south of the Australianand Tasmanian coasts, is apparent in aerosol hygroscopicity derived from CCNspectra and aerosol particle size distribution. The particles are morehygroscopic to the north, consistent with a greater fraction of sea saltfrom PMA, and less hygroscopic to the south as there is more sulfate andorganic particles originating from biogenic sources in coastal Antarctica. 
    more » « less
  3. null (Ed.)
    Long-range transport of biogenic emissions from the coast of Antarctica, precipitation scavenging, and cloud processing are the main processes that influence the observed variability in Southern Ocean (SO) marine boundary layer (MBL) condensation nuclei (CN) and cloud condensation nuclei (CCN) concentrations during the austral summer. Airborne particle measurements on the HIAPER GV from north-south transects between Hobart, Tasmania and 62°S during the Southern Ocean Clouds, Radiation Aerosol Transport Experimental Study (SOCRATES) were separated into four regimes comprising combinations of high and low concentrations of CCN and CN. In 5-day HYSPLIT back trajectories, air parcels with elevated CCN concentrations were almost always shown to have crossed the Antarctic coast, a location with elevated phytoplankton emissions relative to the rest of the SO in the region south of Australia. The presence of high CCN concentrations was also consistent with high cloud fractions over their trajectory, suggesting there was substantial growth of biogenically formed particles through cloud processing. Cases with low cloud fraction, due to the presence of cumulus clouds, had high CN concentrations, consistent with previously reported new particle formation in cumulus outflow regions. Measurements associated with elevated precipitation during the previous 1.5-days of their trajectory had low CCN concentrations indicating CCN were effectively scavenged by precipitation. A coarse-mode fitting algorithm was used to determine the primary marine aerosol (PMA) contribution which accounted for < 20% of CCN (at 0.3% supersaturation) and cloud droplet number concentrations. Vertical profiles of CN and large particle concentrations (Dp > 0.07µm) indicated that particle formation occurs more frequently above the MBL; however, the growth of recently formed particles typically occurs in the MBL, consistent with cloud processing and the condensation of volatile compound oxidation products. 
    more » « less
  4. The number concentration and properties of aerosol particles serving as cloud condensation nuclei (CCN) are important for understanding cloud properties, including in the tropical Atlantic marine boundary layer (MBL), where marine cumulus clouds reflect incoming solar radiation and obscure the low-albedo ocean surface. Studies linking aerosol source, composition, and water uptake properties in this region have been conducted primarily during the summertime dust transport season, despite the region receiving a variety of aerosol particle types throughout the year. In this study, we compare size-resolved aerosol chemical composition data to the hygrocopicity parameter κ derived from size-resolved CCN measurements made during the Elucidating the Role of Clouds-Circulation Coupling in Climate (EUREC4A) and Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC) campaigns from January to February 2020. We observed unexpected periods of wintertime long-range transport of African smoke and dust to Barbados. During these periods, the accumulation-mode aerosol particle and CCN Number concentrations as well as the proportions of dust and smoke particles increased, whereas average κ slightly decreased (κ = 0.46 +/- 0.10) from marine background conditions (κ = 0.52 +/- 0.09) when the particles were mostly composed of marine organics and sulfate. Size-resolved chemical analysis shows that smoke particles were the major contributor to the accumulation mode during long-range transport events, indicating that smoke is mainly responsible for the observed increase in CCN number concentrations. Earlier studies conducted at Barbados have mostly focused on the role of dust in CCN, but our results show that aerosol hygroscopicity and CCN number concentrations during wintertime long-range transport events over the tropical North Atlantic are also affected by African smoke. Our findings highlight the importance of African smoke for atmospheric processes and cloud formation over the Caribbean. In the file “Dust_Mass_Conc_Royer2022” dust mass concentrations in grams per meter^3 are provided for each day of sampling. These data were used to generate Figure 2a in the manuscript. The file “Particle_Type_#fract_Royer2022” contains data obtained through CCSEM/EDX analysis and used to generate the temporal chemistry plot (Figure 4) provided in the manuscript. The data contains particle numbers for each particle type identified on stage 3 of the sampler, total particle numbers analyzed for the entire stage 3 sample, as well as particle number fractions in % values. In the file “Size-resolved_chem_Royer2022” we provide particle # and number fraction (%) values used to generate size-resolved chemistry plots in the manuscript (Figures 5a and 5b). The file includes all particle numbers and number fractions for sea salt, aged sea salt, dust+sea salt, dust, dust+smoke, smoke, sulfate, and organic particles in each size bin from 0.1 through 8.058 um during cumulative clean marine periods and CAT Event 1 as described in the manuscript. The file “K_at_0.16S_Royer2022” contains κ values calculated at 0.16% supersaturation (S) throughout the entire sampling period. These data were specifically used to generate the plot in Figure 7a. The file “CCN#_at_0.16S_Royer2022” contains cloud condensation nuclei (CCN) values calculated at 0.16% supersaturation (S) throughout the entire sampling period. These data were used to create the CCN portion of the plot in Figure 7b. 
    more » « less
  5. Abstract. The number concentration and properties of aerosol particles serving ascloud condensation nuclei (CCN) are important for understanding cloudproperties, including in the tropical Atlantic marine boundary layer (MBL), where marine cumulus clouds reflect incoming solar radiation and obscure thelow-albedo ocean surface. Studies linking aerosol source, composition, andwater uptake properties in this region have been conducted primarily duringthe summertime dust transport season, despite the region receiving a varietyof aerosol particle types throughout the year. In this study, we comparesize-resolved aerosol chemical composition data to the hygroscopicityparameter κ derived from size-resolved CCN measurements made duringthe Elucidating the Role of Clouds–Circulation Coupling in Climate (EUREC4A) and Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC) campaigns from January to February 2020. Weobserved unexpected periods of wintertime long-range transport of Africansmoke and dust to Barbados. During these periods, the accumulation-mode aerosol particle and CCN number concentrations as well as the proportions ofdust and smoke particles increased, whereas the average κ slightlydecreased (κ=0.46±0.10) from marine backgroundconditions (κ=0.52±0.09) when the submicron particles were mostly composed of marine organics and sulfate. Size-resolved chemicalanalysis shows that smoke particles were the major contributor to theaccumulation mode during long-range transport events, indicating that smokeis mainly responsible for the observed increase in CCN numberconcentrations. Earlier studies conducted at Barbados have mostly focused onthe role of dust on CCN, but our results show that aerosol hygroscopicity and CCN number concentrations during wintertime long-range transport events over the tropical North Atlantic are also affected by African smoke. Ourfindings highlight the importance of African smoke for atmospheric processesand cloud formation over the Caribbean. 
    more » « less