skip to main content

Title: Mitigating belief projection in explainable artificial intelligence via Bayesian teaching
Abstract State-of-the-art deep-learning systems use decision rules that are challenging for humans to model. Explainable AI (XAI) attempts to improve human understanding but rarely accounts for how people typically reason about unfamiliar agents. We propose explicitly modelling the human explainee via Bayesian teaching, which evaluates explanations by how much they shift explainees’ inferences toward a desired goal. We assess Bayesian teaching in a binary image classification task across a variety of contexts. Absent intervention, participants predict that the AI’s classifications will match their own, but explanations generated by Bayesian teaching improve their ability to predict the AI’s judgements by moving them away from this prior belief. Bayesian teaching further allows each case to be broken down into sub-examples (here saliency maps). These sub-examples complement whole examples by improving error detection for familiar categories, whereas whole examples help predict correct AI judgements of unfamiliar cases.  more » « less
Award ID(s):
2117429 1828528
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent developments in AI have provided assisting tools to support pathologists’ diagnoses. However, it remains challenging to incorporate such tools into pathologists’ practice; one main concern is AI’s insufficient workflow integration with medical decisions. We observed pathologists’ examination and discovered that the main hindering factor to integrate AI is its incompatibility with pathologists’ workflow. To bridge the gap between pathologists and AI, we developed a human-AI collaborative diagnosis tool — xPath — that shares a similar examination process to that of pathologists, which can improve AI’s integration into their routine examination. The viability of xPath  is confirmed by a technical evaluation and work sessions with twelve medical professionals in pathology. This work identifies and addresses the challenge of incorporating AI models into pathology, which can offer first-hand knowledge about how HCI researchers can work with medical professionals side-by-side to bring technological advances to medical tasks towards practical applications. 
    more » « less
  2. Despite AI’s significant growth, its “black box” nature creates challenges in generating adequate trust. Thus, it is seldom utilized as a standalone unit in high-risk applications. Explainable AI (XAI) has emerged to help with this problem. Designing effectively fast and accurate XAI is still challenging, especially in numerical applications. We propose a novel XAI model named Transparency Relying Upon Statistical Theory (TRUST) for XAI. TRUST XAI models the statistical behavior of the underlying AI’s outputs. Factor analysis is used to transform the input features into a new set of latent variables. We use mutual information to rank these parameters and pick only the most influential ones on the AI’s outputs and call them “representatives” of the classes. Then we use multi-model Gaussian distributions to determine the likelihood of any new sample belonging to each class. The proposed technique is a surrogate model that is not dependent on the type of the underlying AI. TRUST is suitable for any numerical application. Here, we use cybersecurity of the industrial internet of things (IIoT) as an example application. We analyze the performance of the model using three different cybersecurity datasets, including “WUSTLIIoT”, “NSL-KDD”, and “UNSW”. We also show how TRUST is explained to the user. The TRUST XAI provides explanations for new random samples with an average success rate of 98%. Also, the advantages of our model over another popular XAI model, LIME, including performance, speed, and the method of explainability are evaluated. 
    more » « less
  3. Automated Driving Systems (ADS), like many other systems people use today, depend on successful Artificial Intelligence (AI) for safe roadway operations. In ADS, an essential function completed by AI is the computer vision techniques for detecting roadway signs by vehicles. The AI, though, is not always reliable and sometimes requires the human’s intelligence to complete a task. For the human to collaborate with the AI, it is critical to understand the human’s perception of AI. In the present study, we investigated how human drivers perceive the AI’s capabilities in a driving context where a stop sign is compromised and how knowledge, experience, and trust related to AI play a role. We found that participants with more knowledge of AI tended to trust AI more, and those who reported more experience with AI had a greater understanding of AI. Participants correctly deduced that a maliciously manipulated stop sign would be more difficult for AI to identify. Nevertheless, participants still overestimated the AI’s ability to recognize the malicious stop sign. Our findings suggest that the public do not yet have a sufficiently accurate understanding of specific AI systems, which leads them to over-trust the AI in certain conditions.

    more » « less
  4. To support human decision making with machine learning models, we often need to elucidate patterns embedded in the models that are unsalient, unknown, or counterintuitive to humans. While existing approaches focus on explaining machine predictions with real-time assistance, we explore model-driven tutorials to help humans understand these patterns in a training phase. We consider both tutorials with guidelines from scientific papers, analogous to current practices of science communication, and automatically selected examples from training data with explanations. We use deceptive review detection as a testbed and conduct large-scale, randomized human-subject experiments to examine the effectiveness of such tutorials. We find that tutorials indeed improve human performance, with and without real-time assistance. In particular, although deep learning provides superior predictive performance than simple models, tutorials and explanations from simple models are more useful to humans. Our work suggests future directions for human-centered tutorials and explanations towards a synergy between humans and AI. 
    more » « less
  5. Abstract

    Neural network architectures are achieving superhuman performance on an expanding range of tasks. To effectively and safely deploy these systems, their decision‐making must be understandable to a wide range of stakeholders. Methods to explain artificial intelligence (AI) have been proposed to answer this challenge, but a lack of theory impedes the development of systematic abstractions, which are necessary for cumulative knowledge gains. We propose Bayesian Teaching as a framework for unifying explainable AI (XAI) by integrating machine learning and human learning. Bayesian Teaching formalizes explanation as a communication act of an explainer to shift the beliefs of an explainee. This formalization decomposes a wide range of XAI methods into four components: (a) the target inference, (b) the explanation, (c) the explainee model, and (d) the explainer model. The abstraction afforded by Bayesian Teaching to decompose XAI methods elucidates the invariances among them. The decomposition of XAI systems enables modular validation, as each of the first three components listed can be tested semi‐independently. This decomposition also promotes generalization through recombination of components from different XAI systems, which facilitates the generation of novel variants. These new variants need not be evaluated one by one provided that each component has been validated, leading to an exponential decrease in development time. Finally, by making the goal of explanation explicit, Bayesian Teaching helps developers to assess how suitable an XAI system is for its intended real‐world use case. Thus, Bayesian Teaching provides a theoretical framework that encourages systematic, scientific investigation of XAI.

    more » « less