Artificial Intelligence (AI) brings advancements to support pathologists in navigating high-resolution tumor images to search for pathology patterns of interest. However, existing AI-assisted tools have not realized the promised potential due to a lack of insight into pathology and HCI considerations for pathologists’ navigation workflows in practice. We first conducted a formative study with six medical professionals in pathology to capture their navigation strategies. By incorporating our observations along with the pathologists’ domain knowledge, we designed NaviPath — a human-AI collaborative navigation system. An evaluation study with 15 medical professionals in pathology indicated that: (i) compared to the manual navigation, participants saw more than twice the number of pathological patterns in unit time with NaviPath, and (ii) participants achieved higher precision and recall against the AI and the manual navigation on average. Further qualitative analysis revealed that participants’ navigation was more consistent with NaviPath, which can improve the examination quality. 
                        more » 
                        « less   
                    
                            
                            Improving Workflow Integration with xPath: Design and Evaluation of a Human-AI Diagnosis System in Pathology
                        
                    
    
            Recent developments in AI have provided assisting tools to support pathologists’ diagnoses. However, it remains challenging to incorporate such tools into pathologists’ practice; one main concern is AI’s insufficient workflow integration with medical decisions. We observed pathologists’ examination and discovered that the main hindering factor to integrate AI is its incompatibility with pathologists’ workflow. To bridge the gap between pathologists and AI, we developed a human-AI collaborative diagnosis tool — xPath — that shares a similar examination process to that of pathologists, which can improve AI’s integration into their routine examination. The viability of xPath  is confirmed by a technical evaluation and work sessions with twelve medical professionals in pathology. This work identifies and addresses the challenge of incorporating AI models into pathology, which can offer first-hand knowledge about how HCI researchers can work with medical professionals side-by-side to bring technological advances to medical tasks towards practical applications. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2047297
- PAR ID:
- 10391894
- Date Published:
- Journal Name:
- ACM Transactions on Computer-Human Interaction
- ISSN:
- 1073-0516
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Digital pathology has transformed the traditional pathology practice of analyzing tissue under a microscope into a computer vision workflow. Whole-slide imaging allows pathologists to view and analyze microscopic images on a computer monitor, enabling computational pathology. By leveraging artificial intelligence (AI) and machine learning (ML), computational pathology has emerged as a promising field in recent years. Recently, task-specific AI/ML (eg, convolutional neural networks) has risen to the forefront, achieving above-human performance in many image-processing and computer vision tasks. The performance of task-specific AI/ML models depends on the availability of many annotated training datasets, which presents a rate-limiting factor for AI/ML development in pathology. Task-specific AI/ML models cannot benefit from multimodal data and lack generalization, eg, the AI models often struggle to generalize to new datasets or unseen variations in image acquisition, staining techniques, or tissue types. The 2020s are witnessing the rise of foundation models and generative AI. A foundation model is a large AI model trained using sizable data, which is later adapted (or fine-tuned) to perform different tasks using a modest amount of task-specific annotated data. These AI models provide in-context learning, can self-correct mistakes, and promptly adjust to user feedback. In this review, we provide a brief overview of recent advances in computational pathology enabled by task-specific AI, their challenges and limitations, and then introduce various foundation models. We propose to create a pathology-specific generative AI based on multimodal foundation models and present its potentially transformative role in digital pathology. We describe different use cases, delineating how it could serve as an expert companion of pathologists and help them efficiently and objectively perform routine laboratory tasks, including quantifying image analysis, generating pathology reports, diagnosis, and prognosis. We also outline the potential role that foundation models and generative AI can play in standardizing the pathology laboratory workflow, education, and training.more » « less
- 
            As cyber threats grow in both frequency and sophistication, traditional cybersecurity measures struggle to keep pace with evolving attack methods. Artificial Intelligence (AI) has emerged as a powerful tool for enhancing threat detection, prevention, and response. AI-driven security systems offer the ability to analyze vast amounts of data in real-time, recognize subtle patterns indicative of cyber threats, and adapt to new attack strategies more efficiently than conventional approaches. However, despite AI’s potential, challenges remain regarding its effectiveness, ethical implications, and risks of adversarial manipulation. This research investigates the strengths and limitations of AI-driven cybersecurity by comparing AI-based security tools with traditional methods, identifying key advantages and vulnerabilities, and exploring ethical considerations. Additionally, a survey of cybersecurity professionals was conducted to assess expert opinions on AI’s role, effectiveness, and potential risks. By combining these insights with experimental testing and a comprehensive review of existing literature, this study provides a nuanced understanding of AI’s impact on cybersecurity and offers recommendations for optimizing its integration into modern security infrastructures.more » « less
- 
            Abstract Mitosis is a critical criterion for meningioma grading. However, pathologists’ assessment of mitoses is subject to significant inter-observer variation due to challenges in locating mitosis hotspots and accurately detecting mitotic figures. To address this issue, we leverage digital pathology and propose a computational strategy to enhance pathologists’ mitosis assessment. The strategy has two components: (1) A depth-first search algorithm that quantifies the mathematically maximum mitotic count in 10 consecutive high-power fields, which can enhance the preciseness, especially in cases with borderline mitotic count. (2) Implementing a collaborative sphere to group a set of pathologists to detect mitoses under each high-power field, which can mitigate subjective random errors in mitosis detection originating from individual detection errors. By depth-first search algorithm (1) , we analyzed 19 meningioma slides and discovered that the proposed algorithm upgraded two borderline cases verified at consensus conferences. This improvement is attributed to the algorithm’s ability to quantify the mitotic count more comprehensively compared to other conventional methods of counting mitoses. In implementing a collaborative sphere (2) , we evaluated the correctness of mitosis detection from grouped pathologists and/or pathology residents, where each member of the group annotated a set of 48 high-power field images for mitotic figures independently. We report that groups with sizes of three can achieve an average precision of 0.897 and sensitivity of 0.699 in mitosis detection, which is higher than an average pathologist in this study (precision: 0.750, sensitivity: 0.667). The proposed computational strategy can be integrated with artificial intelligence workflow, which envisions the future of achieving a rapid and robust mitosis assessment by interactive assisting algorithms that can ultimately benefit patient management.more » « less
- 
            Abstract BackgroundDiagnostic pathology depends on complex, structured reasoning to interpret clinical, histologic, and molecular data. Replicating this cognitive process algorithmically remains a significant challenge. As large language models (LLMs) gain traction in medicine, it is critical to determine whether they have clinical utility by providing reasoning in highly specialized domains such as pathology. MethodsWe evaluated the performance of four reasoning LLMs (OpenAI o1, OpenAI o3-mini, Gemini 2.0 Flash Thinking Experimental, and DeepSeek-R1 671B) on 15 board-style open-ended pathology questions. Responses were independently reviewed by 11 pathologists using a structured framework that assessed language quality (accuracy, relevance, coherence, depth, and conciseness) and seven diagnostic reasoning strategies. Scores were normalized and aggregated for analysis. We also evaluated inter-observer agreement to assess scoring consistency. Model comparisons were conducted using one-way ANOVA and Tukey’s Honestly Significant Difference (HSD) test. ResultsGemini and DeepSeek significantly outperformed OpenAI o1 and OpenAI o3-mini in overall reasoning quality (p < 0.05), particularly in analytical depth and coherence. While all models achieved comparable accuracy, only Gemini and DeepSeek consistently applied expert-like reasoning strategies, including algorithmic, inductive, and Bayesian approaches. Performance varied by reasoning type: models performed best in algorithmic and deductive reasoning and poorest in heuristic and pattern recognition. Inter-observer agreement was highest for Gemini (p < 0.05), indicating greater consistency and interpretability. Models with more in-depth reasoning (Gemini and DeepSeek) were generally less concise. ConclusionAdvanced LLMs such as Gemini and DeepSeek can approximate aspects of expert-level diagnostic reasoning in pathology, particularly in algorithmic and structured approaches. However, limitations persist in contextual reasoning, heuristic decision-making, and consistency across questions. Addressing these gaps, along with trade-offs between depth and conciseness, will be essential for the safe and effective integration of AI tools into clinical pathology workflows.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    