skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Community and Campus COVID-19 Risk Uncertainty Under University Reopening Scenarios: Model-Based Analysis
Background Significant uncertainty has existed about the safety of reopening college and university campuses before the COVID-19 pandemic is better controlled. Moreover, little is known about the effects that on-campus students may have on local higher-risk communities. Objective We aimed to estimate the range of potential community and campus COVID-19 exposures, infections, and mortality under various university reopening plans and uncertainties. Methods We developed campus-only, community-only, and campus × community epidemic differential equations and agent-based models, with inputs estimated via published and grey literature, expert opinion, and parameter search algorithms. Campus opening plans (spanning fully open, hybrid, and fully virtual approaches) were identified from websites and publications. Additional student and community exposures, infections, and mortality over 16-week semesters were estimated under each scenario, with 10% trimmed medians, standard deviations, and probability intervals computed to omit extreme outliers. Sensitivity analyses were conducted to inform potential effective interventions. Results Predicted 16-week campus and additional community exposures, infections, and mortality for the base case with no precautions (or negligible compliance) varied significantly from their medians (4- to 10-fold). Over 5% of on-campus students were infected after a mean of 76 (SD 17) days, with the greatest increase (first inflection point) occurring on average on day 84 (SD 10.2 days) of the semester and with total additional community exposures, infections, and mortality ranging from 1-187, 13-820, and 1-21 per 10,000 residents, respectively. Reopening precautions reduced infections by 24%-26% and mortality by 36%-50% in both populations. Beyond campus and community reproductive numbers, sensitivity analysis indicated no dominant factors that interventions could primarily target to reduce the magnitude and variability in outcomes, suggesting the importance of comprehensive public health measures and surveillance. Conclusions Community and campus COVID-19 exposures, infections, and mortality resulting from reopening campuses are highly unpredictable regardless of precautions. Public health implications include the need for effective surveillance and flexible campus operations.  more » « less
Award ID(s):
1742521
PAR ID:
10301578
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
JMIR Public Health and Surveillance
Volume:
7
Issue:
4
ISSN:
2369-2960
Page Range / eLocation ID:
e24292
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Khudyakov, Yury E (Ed.)
    We construct an agent-based SEIR model to simulate COVID-19 spread at a 16000-student mostly non-residential urban university during the Fall 2021 Semester. We find that mRNA vaccine coverage at 100% combined with weekly screening testing of 25% of the campus population make it possible to safely reopen to in-person instruction. Our simulations exhibit a right-skew for total infections over the semester that becomes more pronounced with less vaccine coverage, less vaccine effectiveness and no additional preventative measures. This suggests that high levels of infection are not exceedingly rare with campus social connections the main transmission route. Finally, we find that if vaccine coverage is 100% and vaccine effectiveness is above 80%, then a safe reopening is possible even without facemask use. This models possible future scenarios with high coverage of additional “booster” doses of COVID-19 vaccines. 
    more » « less
  2. Abstract In response to the COVID-19 pandemic, many higher educational institutions moved their courses on-line in hopes of slowing disease spread. The advent of multiple highly-effective vaccines offers the promise of a return to “normal” in-person operations, but it is not clear if—or for how long—campuses should employ non-pharmaceutical interventions such as requiring masks or capping the size of in-person courses. In this study, we develop and fine-tune a model of COVID-19 spread to UC Merced’s student and faculty population. We perform a global sensitivity analysis to consider how both pharmaceutical and non-pharmaceutical interventions impact disease spread. Our work reveals that vaccines alone may not be sufficient to eradicate disease dynamics and that significant contact with an infectious surrounding community will maintain infections on-campus. Our work provides a foundation for higher-education planning allowing campuses to balance the benefits of in-person instruction with the ability to quarantine/isolate infectious individuals. 
    more » « less
  3. null (Ed.)
    Abstract Deaths are frequently under-estimated during emergencies, times when accurate mortality estimates are crucial for emergency response. This study estimates excess all-cause, pneumonia and influenza mortality during the coronavirus disease 2019 (COVID-19) pandemic using the 11 September 2020 release of weekly mortality data from the United States (U.S.) Mortality Surveillance System (MSS) from 27 September 2015 to 9 May 2020, using semiparametric and conventional time-series models in 13 states with high reported COVID-19 deaths and apparently complete mortality data: California, Colorado, Connecticut, Florida, Illinois, Indiana, Louisiana, Massachusetts, Michigan, New Jersey, New York, Pennsylvania and Washington. We estimated greater excess mortality than official COVID-19 mortality in the U.S. (excess mortality 95% confidence interval (CI) 100 013–127 501 vs. 78 834 COVID-19 deaths) and 9 states: California (excess mortality 95% CI 3338–6344) vs. 2849 COVID-19 deaths); Connecticut (excess mortality 95% CI 3095–3952) vs. 2932 COVID-19 deaths); Illinois (95% CI 4646–6111) vs. 3525 COVID-19 deaths); Louisiana (excess mortality 95% CI 2341–3183 vs. 2267 COVID-19 deaths); Massachusetts (95% CI 5562–7201 vs. 5050 COVID-19 deaths); New Jersey (95% CI 13 170–16 058 vs. 10 465 COVID-19 deaths); New York (95% CI 32 538–39 960 vs. 26 584 COVID-19 deaths); and Pennsylvania (95% CI 5125–6560 vs. 3793 COVID-19 deaths). Conventional model results were consistent with semiparametric results but less precise. Significant excess pneumonia deaths were also found for all locations and we estimated hundreds of excess influenza deaths in New York. We find that official COVID-19 mortality substantially understates actual mortality, excess deaths cannot be explained entirely by official COVID-19 death counts. Mortality reporting lags appeared to worsen during the pandemic, when timeliness in surveillance systems was most crucial for improving pandemic response. 
    more » « less
  4. null (Ed.)
    School closures may reduce the size of social networks among children, potentially limiting infectious disease transmission. To estimate the impact of K–12 closures and reopening policies on children's social interactions and COVID-19 incidence in California's Bay Area, we collected data on children's social contacts and assessed implications for transmission using an individual-based model. Elementary and Hispanic children had more contacts during closures than high school and non-Hispanic children, respectively. We estimated that spring 2020 closures of elementary schools averted 2167 cases in the Bay Area (95% CI: −985, 5572), fewer than middle (5884; 95% CI: 1478, 11.550), high school (8650; 95% CI: 3054, 15 940) and workplace (15 813; 95% CI: 9963, 22 617) closures. Under assumptions of moderate community transmission, we estimated that reopening for a four-month semester without any precautions will increase symptomatic illness among high school teachers (an additional 40.7% expected to experience symptomatic infection, 95% CI: 1.9, 61.1), middle school teachers (37.2%, 95% CI: 4.6, 58.1) and elementary school teachers (4.1%, 95% CI: −1.7, 12.0). However, we found that reopening policies for elementary schools that combine universal masking with classroom cohorts could result in few within-school transmissions, while high schools may require masking plus a staggered hybrid schedule. Stronger community interventions (e.g. remote work, social distancing) decreased the risk of within-school transmission across all measures studied, with the influence of community transmission minimized as the effectiveness of the within-school measures increased. 
    more » « less
  5. Galea, Sandro (Ed.)
    Abstract Excess mortality has exceeded reported deaths from Covid-19 during the pandemic. This gap may be attributable to deaths that occurred among individuals with undiagnosed Covid-19 infections or indirect consequences of the pandemic response such as interruptions in medical care; distinguishing these possibilities has implications for public health responses. In the present study, we examined patterns of excess mortality over time and by setting (in-hospital or out-of-hospital) and cause of death using death certificate data from California. The estimated number of excess natural-cause deaths from 2020 March 1 to 2021 February 28 (69,182) exceeded the number of Covid-19 diagnosed deaths (53,667) by 29%. Nearly half, 47.4% (32,775), of excess natural-cause deaths occurred out of the hospital, where only 28.6% (9,366) of excess mortality was attributed to Covid-19. Over time, increases or decreases in excess natural non-Covid-19 mortality closely mirrored increases or decreases in Covid-19 mortality. The time series were positively correlated in out-of-hospital settings, particularly at time lags when excess natural-cause deaths preceded reported Covid-19 deaths; for example, when comparing Covid-19 deaths to excess natural-cause deaths in the week prior, the correlation was 0.73. The strong temporal association of reported Covid-19 deaths with excess out-of-hospital deaths from other reported natural-cause causes suggests Covid-19 deaths were undercounted during the first year of the pandemic. 
    more » « less