skip to main content


Title: Excess natural-cause deaths in California by cause and setting: March 2020 through February 2021
Abstract Excess mortality has exceeded reported deaths from Covid-19 during the pandemic. This gap may be attributable to deaths that occurred among individuals with undiagnosed Covid-19 infections or indirect consequences of the pandemic response such as interruptions in medical care; distinguishing these possibilities has implications for public health responses. In the present study, we examined patterns of excess mortality over time and by setting (in-hospital or out-of-hospital) and cause of death using death certificate data from California. The estimated number of excess natural-cause deaths from 2020 March 1 to 2021 February 28 (69,182) exceeded the number of Covid-19 diagnosed deaths (53,667) by 29%. Nearly half, 47.4% (32,775), of excess natural-cause deaths occurred out of the hospital, where only 28.6% (9,366) of excess mortality was attributed to Covid-19. Over time, increases or decreases in excess natural non-Covid-19 mortality closely mirrored increases or decreases in Covid-19 mortality. The time series were positively correlated in out-of-hospital settings, particularly at time lags when excess natural-cause deaths preceded reported Covid-19 deaths; for example, when comparing Covid-19 deaths to excess natural-cause deaths in the week prior, the correlation was 0.73. The strong temporal association of reported Covid-19 deaths with excess out-of-hospital deaths from other reported natural-cause causes suggests Covid-19 deaths were undercounted during the first year of the pandemic.  more » « less
Award ID(s):
2200052
NSF-PAR ID:
10462082
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Editor(s):
Galea, Sandro
Date Published:
Journal Name:
PNAS Nexus
Volume:
1
Issue:
3
ISSN:
2752-6542
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Deaths are frequently under-estimated during emergencies, times when accurate mortality estimates are crucial for emergency response. This study estimates excess all-cause, pneumonia and influenza mortality during the coronavirus disease 2019 (COVID-19) pandemic using the 11 September 2020 release of weekly mortality data from the United States (U.S.) Mortality Surveillance System (MSS) from 27 September 2015 to 9 May 2020, using semiparametric and conventional time-series models in 13 states with high reported COVID-19 deaths and apparently complete mortality data: California, Colorado, Connecticut, Florida, Illinois, Indiana, Louisiana, Massachusetts, Michigan, New Jersey, New York, Pennsylvania and Washington. We estimated greater excess mortality than official COVID-19 mortality in the U.S. (excess mortality 95% confidence interval (CI) 100 013–127 501 vs. 78 834 COVID-19 deaths) and 9 states: California (excess mortality 95% CI 3338–6344) vs. 2849 COVID-19 deaths); Connecticut (excess mortality 95% CI 3095–3952) vs. 2932 COVID-19 deaths); Illinois (95% CI 4646–6111) vs. 3525 COVID-19 deaths); Louisiana (excess mortality 95% CI 2341–3183 vs. 2267 COVID-19 deaths); Massachusetts (95% CI 5562–7201 vs. 5050 COVID-19 deaths); New Jersey (95% CI 13 170–16 058 vs. 10 465 COVID-19 deaths); New York (95% CI 32 538–39 960 vs. 26 584 COVID-19 deaths); and Pennsylvania (95% CI 5125–6560 vs. 3793 COVID-19 deaths). Conventional model results were consistent with semiparametric results but less precise. Significant excess pneumonia deaths were also found for all locations and we estimated hundreds of excess influenza deaths in New York. We find that official COVID-19 mortality substantially understates actual mortality, excess deaths cannot be explained entirely by official COVID-19 death counts. Mortality reporting lags appeared to worsen during the pandemic, when timeliness in surveillance systems was most crucial for improving pandemic response. 
    more » « less
  2. Aboelhadid, Shawky M (Ed.)
    The COVID-19 pandemic has caused over 500 million cases and over six million deaths globally. From these numbers, over 12 million cases and over 250 thousand deaths have occurred on the African continent as of May 2022. Prevention and surveillance remains the cornerstone of interventions to halt the further spread of COVID-19. Google Health Trends (GHT), a free Internet tool, may be valuable to help anticipate outbreaks, identify disease hotspots, or understand the patterns of disease surveillance. We collected COVID-19 case and death incidence for 54 African countries and obtained averages for four, five-month study periods in 2020–2021. Average case and death incidences were calculated during these four time periods to measure disease severity. We used GHT to characterize COVID-19 incidence across Africa, collecting numbers of searches from GHT related to COVID-19 using four terms: ‘coronavirus’, ‘coronavirus symptoms’, ‘COVID19’, and ‘pandemic’. The terms were related to weekly COVID-19 case incidences for the entire study period via multiple linear and weighted linear regression analyses. We also assembled 72 variables assessing Internet accessibility, demographics, economics, health, and others, for each country, to summarize potential mechanisms linking GHT searches and COVID-19 incidence. COVID-19 burden in Africa increased steadily during the study period. Important increases for COVID-19 death incidence were observed for Seychelles and Tunisia. Our study demonstrated a weak correlation between GHT and COVID-19 incidence for most African countries. Several variables seemed useful in explaining the pattern of GHT statistics and their relationship to COVID-19 including: log of average weekly cases, log of cumulative total deaths, and log of fixed total number of broadband subscriptions in a country. Apparently, GHT may best be used for surveillance of diseases that are diagnosed more consistently. Overall, GHT-based surveillance showed little applicability in the studied countries. GHT for an ongoing epidemic might be useful in specific situations, such as when countries have significant levels of infection with low variability. Future studies might assess the algorithm in different epidemic contexts. 
    more » « less
  3. Importance Prior research has established that Hispanic and non-Hispanic Black residents in the US experienced substantially higher COVID-19 mortality rates in 2020 than non-Hispanic White residents owing to structural racism. In 2021, these disparities decreased. Objective To assess to what extent national decreases in racial and ethnic disparities in COVID-19 mortality between the initial pandemic wave and subsequent Omicron wave reflect reductions in mortality vs other factors, such as the pandemic’s changing geography. Design, Setting, and Participants This cross-sectional study was conducted using data from the US Centers for Disease Control and Prevention for COVID-19 deaths from March 1, 2020, through February 28, 2022, among adults aged 25 years and older residing in the US. Deaths were examined by race and ethnicity across metropolitan and nonmetropolitan areas, and the national decrease in racial and ethnic disparities between initial and Omicron waves was decomposed. Data were analyzed from June 2021 through March 2023. Exposures Metropolitan vs nonmetropolitan areas and race and ethnicity. Main Outcomes and Measures Age-standardized death rates. Results There were death certificates for 977 018 US adults aged 25 years and older (mean [SD] age, 73.6 [14.6] years; 435 943 female [44.6%]; 156 948 Hispanic [16.1%], 140 513 non-Hispanic Black [14.4%], and 629 578 non-Hispanic White [64.4%]) that included a mention of COVID-19. The proportion of COVID-19 deaths among adults residing in nonmetropolitan areas increased from 5944 of 110 526 deaths (5.4%) during the initial wave to a peak of 40 360 of 172 515 deaths (23.4%) during the Delta wave; the proportion was 45 183 of 210 554 deaths (21.5%) during the Omicron wave. The national disparity in age-standardized COVID-19 death rates per 100 000 person-years for non-Hispanic Black compared with non-Hispanic White adults decreased from 339 to 45 deaths from the initial to Omicron wave, or by 293 deaths. After standardizing for age and racial and ethnic differences by metropolitan vs nonmetropolitan residence, increases in death rates among non-Hispanic White adults explained 120 deaths/100 000 person-years of the decrease (40.7%); 58 deaths/100 000 person-years in the decrease (19.6%) were explained by shifts in mortality to nonmetropolitan areas, where a disproportionate share of non-Hispanic White adults reside. The remaining 116 deaths/100 000 person-years in the decrease (39.6%) were explained by decreases in death rates in non-Hispanic Black adults. Conclusions and Relevance This study found that most of the national decrease in racial and ethnic disparities in COVID-19 mortality between the initial and Omicron waves was explained by increased mortality among non-Hispanic White adults and changes in the geographic spread of the pandemic. These findings suggest that despite media reports of a decline in disparities, there is a continued need to prioritize racial health equity in the pandemic response. 
    more » « less
  4. Nazif-Munoz, Jose Ignacio (Ed.)
    We examine trends in drug overdose deaths by race, gender, and geography in the United States during the period 2013–2020. Race and gender specific crude rates were extracted from the final National Vital Statistics System multiple cause-of-death mortality files for several jurisdictions and used to calculate the male-to-female ratios of crude rates between 2013 and 2020. We established 2013–2019 temporal trends for four major drug types: psychostimulants with addiction potential (T43.6, such as methamphetamines); heroin (T40.1); natural and semi-synthetic opioids (T40.2, such as those contained in prescription pain-killers); synthetic opioids (T40.4, such as fentanyl and its derivatives) through a quadratic regression and determined whether changes in the pandemic year 2020 were statistically significant. We also identified which race, gender and states were most impacted by drug overdose deaths. Nationwide, the year 2020 saw statistically significant increases in overdose deaths from all drug categories except heroin, surpassing predictions based on 2013–2019 trends. Crude rates for Black individuals of both genders surpassed those for White individuals for fentanyl and psychostimulants in 2018, creating a gap that widened through 2020. In some regions, mortality among White persons decreased while overdose deaths for Black persons kept rising. The largest 2020 mortality statistic is for Black males in the District of Columbia, with a record 134 overdose deaths per 100,000 due to fentanyl, 9.4 times more than the fatality rate among White males. Male overdose crude rates in 2020 remain larger than those of females for all drug categories except in Idaho, Utah and Arkansas where crude rates of overdose deaths by natural and semisynthetic opioids for females exceeded those of males. Drug prevention, mitigation and no-harm strategies should include racial, geographical and gender-specific efforts, to better identify and serve at-risk groups. 
    more » « less
  5. Abstract

    In this work, the COVID-19 pandemic burden in Ukraine is investigated retrospectively using the excess mortality measures during 2020–2021. In particular, the epidemic impact on the Ukrainian population is studied via the standardized both all-cause and cause-specific mortality scores before and during the epidemic. The excess mortality counts during the pandemic were predicted based on historic data using parametric and nonparametric modeling and then compared with the actual reported counts to quantify the excess. The corresponding standardized mortalityP-score metrics were also compared with the neighboring countries. In summary, there were three “waves” of excess all-cause mortality in Ukraine in December 2020, April 2021 and November 2021 with excess of 32%, 43% and 83% above the expected mortality. Each new “wave” of the all-cause mortality was higher than the previous one and the mortality “peaks” corresponded in time to three “waves” of lab-confirmed COVID-19 mortality. The lab-confirmed COVID-19 mortality constituted 9% to 24% of the all-cause mortality during those three peak months. Overall, the mortality trends in Ukraine over time were similar to neighboring countries where vaccination coverage was similar to that in Ukraine. For cause-specific mortality, the excess observed was due to pneumonia as well as circulatory system disease categories that peaked at the same times as the all-cause and lab-confirmed COVID-19 mortality, which was expected. The pneumonias as well as circulatory system disease categories constituted the majority of all cases during those peak times. The seasonality in mortality due to the infectious and parasitic disease category became less pronounced during the pandemic. While the reported numbers were always relatively low, alcohol-related mortality also declined during the pandemic.

     
    more » « less