skip to main content


Title: Tunable, bacterio-instructive scaffolds made from functional graphenic materials
The balance of bacterial populations in the human body is critical for human health. Researchers have aimed to control bacterial populations using antibiotic substrates. However, antibiotic materials that non-selectively kill bacteria can compromise health by eliminating beneficial bacteria, which leaves the body vulnerable to colonization by harmful pathogens. Due to their chemical tunablity and unique surface properties, graphene oxide (GO)-based materials – termed “functional graphenic materials” (FGMs) – have been previously designed to be antibacterial but have the capacity to actively adhere and instruct probiotics to maintain human health. Numerous studies have demonstrated that negatively and positively charged surfaces influence bacterial adhesion through electrostatic interactions with the negatively charged bacterial surface. We found that tuning the surface charge of FGMs provides an avenue to control bacterial attachment without compromising vitality. Using E. coli as a model organism for Gram-negative bacteria, we demonstrate that negatively charged Claisen graphene (CG), a reduced and carboxylated FGM, is bacterio-repellent through electrostatic repulsion with the bacterial surface. Though positively charged poly- l -lysine (PLL) is antibacterial when free in solution by inserting into the bacterial cell wall, here, we found that covalent conjugation of PLL to CG (giving PLL n -G) masks the antimicrobial activity of PLL by restricting polypeptide mobility. This allows the immobilized positive charge of the PLL n -Gs to be leveraged for E. coli adhesion through electrostatic attraction. We identified the magnitude of positive charge of the PLL n -G conjugates, which is modulated by the length of the PLL peptide, as an important parameter to tune the balance between the opposing forces of bacterial adhesion and proliferation. We also tested adhesion of Gram-positive B. subtilis to these FGMs and found that the effect of FGM charge is less pronounced. B. subtilis adheres nondiscriminatory to all FGMs, regardless of charge, but adhesion is scarce and localized. Overall, this work demonstrates that FGMs can be tuned to selectively control bacterial response, paving the way for future development of FGM-based biomaterials as bacterio-instructive scaffolds through careful design of FGM surface chemistry.  more » « less
Award ID(s):
1905665
NSF-PAR ID:
10301672
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Biomaterials Science
Volume:
9
Issue:
7
ISSN:
2047-4830
Page Range / eLocation ID:
2467 to 2479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Molecular-level understanding of nanomaterial interactions with bacterial cell surfaces can facilitate design of antimicrobial and antifouling surfaces and inform assessment of potential consequences of nanomaterial release into the environment. Here, we investigate the interaction of cationic nanoparticles with the main surface components of Gram-positive bacteria: peptidoglycan and teichoic acids. We employed intact cells and isolated cell walls from wild type Bacillus subtilis and two mutant strains differing in wall teichoic acid composition to investigate interaction with gold nanoparticles functionalized with cationic, branched polyethylenimine. We quantified nanoparticle association with intact cells by flow cytometry and determined sites of interaction by solid-state 31 P- and 13 C-NMR spectroscopy. We find that wall teichoic acid structure and composition were important determinants for the extent of interaction with cationic gold nanoparticles. The nanoparticles interacted more with wall teichoic acids from the wild type and mutant lacking glucose in its wall teichoic acids than those from the mutant having wall teichoic acids lacking alanine and exhibiting more restricted molecular motion. Our experimental evidence supports the interpretation that electrostatic forces contributed to nanoparticle–cell interactions and that the accessibility of negatively charged moieties in teichoic acid chains influences the degree of interaction. The approaches employed in this study can be applied to engineered nanomaterials differing in core composition, shape, or surface functional groups as well as to other types of bacteria to elucidate the influence of nanoparticle and cell surface properties on interactions with Gram-positive bacteria. 
    more » « less
  2. Bacterial infection has traditionally been treated with antibiotics, but their overuse is leading to the development of antibiotic resistance. This may be mitigated by alternative approaches to prevent or treat bacterial infections without utilization of antibiotics. Among the alternatives is the use of photo-responsive antimicrobial nanoparticles and/or nanocomposites, which present unique properties activated by light. In this study, we explored the combined use of titanium oxide and polydopamine to create nanoparticles with photocatalytic and photothermal antibacterial properties triggered by visible or near-infrared light. Furthermore, as a proof-of-concept, these photo-responsive nanoparticles were combined with mussel-inspired catechol-modified hyaluronic acid hydrogels to form novel light-driven antibacterial nanocomposites. The materials were challenged with models of Gram-negative and Gram-positive bacteria. For visible light, the average percentage killed (PK) was 94.6 for E. coli and 92.3 for S. aureus. For near-infrared light, PK for E. coli reported 52.8 and 99.2 for S. aureus. These results confirm the exciting potential of these nanocomposites to prevent the development of antibiotic resistance and also to open the door for further studies to optimize their composition in order to increase their bactericidal efficacy for biomedical applications.

     
    more » « less
  3. null (Ed.)
    With the increased bacteria-induced hospital-acquired infections (HAIs) caused by bio-contaminated surfaces, the requirement for a safer and more efficient antibacterial strategy in designing personal protective equipment (PPE) such as N95 respirators is rising with urgency. Herein, a self-decontaminating nanofibrous filter with a high particulate matter (PM) filtration efficiency was designed and fabricated via a facile electrospinning method. The fillers implemented in the electrospun nanofibers were constructed by grafting a layer of antibacterial polymeric quaternary ammonium compound (QAC), that is, poly[2-(dimethyl decyl ammonium) ethyl methacrylate] (PQDMAEMA), onto the surface of metal–organic framework (MOF, UiO-66-NH 2 as a model) to form the active composite UiO-PQDMAEMA. The UiO-PQDMAEMA filter demonstrates an excellent PM filtration efficiency (>95%) at the most penetrating particle size (MPPS) of 80 nm, which is comparable to that of the commercial N95 respirators. Besides, the UiO-PQDMAEMA filter is capable of efficiently killing both Gram-positive ( S. epidermidis ) and Gram-negative ( E. coli ) airborne bacteria. The strong electrostatic interactions between the anionic cell wall of the bacteria and positively charged nitrogen of UiO-PQDMAEMA are the main reasons for severe cell membrane disruption, which leads to the death of bacteria. The present work provides a new avenue for combating air contamination by using the QAC-modified MOF-based active filters. 
    more » « less
  4. Due to the emergence of wide-spread infectious diseases, there is a heightened need for antimicrobial and/or antifouling coatings that can be used to prevent infection and transmission in a variety of applications, ranging from healthcare devices to public facilities. While antimicrobial coatings kill pathogenic bacteria upon contact with the surface, the antimicrobial function alone often lacks long-term effectiveness due to the accumulation of dead cells and their debris on the surface, thus reducing the performance of the coating over time. Therefore, it is desirable to develop coatings with the dual functions of antimicrobial efficacy and fouling resistance, in which antifouling coatings provide the added benefit of preventing the adhesion of dead cells and debris. Leveraging the outstanding antifouling properties of zwitterionic coatings, we synthesized copolymers with this antimicrobial-antifouling dual function by immobilizing lysozyme, a common antimicrobial enzyme, to the surface of a pyridinium-based zwitterionic copolymer. Specifically, poly(4-vinylpyridine- co -pentaflurophenyl methacrylate- co -divinyl benzene) [P(4VP-PFPMA-DVB)] thin films were synthesized by an all-dry vapor deposition technique, initiated Chemical Vapor Deposition, and derivatized using 1,3-propane sultone to obtain sulfobetaine moieties. Lysozyme, known to hydrolyze polysaccharides in the cell wall of Gram-positive bacteria, was immobilized by forming amide bonds with the copolymer coating via nucleophilic substitution of the pentafluorophenyl group. The antifouling and antibacterial performance of the novel lysozyme-zwitterionic coating was tested against Gram-positive Bacillus subtilis and Gram-negative Pseudomonas aeruginosa . A reduction in surface adhesion of 87% was achieved for P. aeruginosa , and of 75% for B. subtilis , when compared to a common poly(vinyl chloride) surface. The lysozyme-zwitterionic coating also deactivated 67% of surface-attached Gram-positive bacteria, B. subtilis . This novel dual-function material can produce anti -infection surfaces for medical devices and surgical tools, personal care products, and surfaces in public facilities. 
    more » « less
  5. Abstract

    Each year, thousands of patients die from antimicrobial‐resistant bacterial infections that fail to respond to conventional antibiotic treatment. Antimicrobial polymers are a promising new method of combating antibiotic‐resistant bacterial infections. We have previously reported the synthesis of a series of narrow‐spectrum peptidomimetic antimicrobial polyurethanes that are effective against Gram‐negative bacteria, such asEscherichia coli; however, these polymers are not effective against Gram‐positive bacteria, such asStaphylococcus aureus. With the aim of understanding the correlation between chemical structure and antibacterial activity, we have subsequently developed three structural variants of these antimicrobial polyurethanes using post‐polymerization modification with decanoic acid and oleic acid. Our results show that such modifications converted the narrow‐spectrum antibacterial activity of these polymers into broad‐spectrum activity against Gram‐positive species such asS. aureus, however, also increasing their toxicity to mammalian cells. Mechanistic studies of bacterial membrane disruption illustrate the differences in antibacterial action between the various polymers. The results demonstrate the challenge of balancing antimicrobial activity and mammalian cell compatibility in the design of antimicrobial polymer compositions. © 2019 Society of Chemical Industry

     
    more » « less