skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Learning-NUM: Network Utility Maximization with Unknown Utility Functions and Queueing Delay
Award ID(s):
1907905
PAR ID:
10301695
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ACM MobiHoc
Page Range / eLocation ID:
21 to 30
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We propose a new measure of deviations from expected utility theory. For any positive number e, we give a characterization of the datasets with a rationalization that is within e (in beliefs, utility, or perceived prices) of expected utility (EU) theory, under the assumption of risk aversion. The number e can then be used as a measure of how far the data is to EU theory. We apply our methodology to data from three large-scale experiments. Many subjects in these experiments are consistent with utility maximization, but not with EU maximization. Our measure of distance to expected utility is correlated with the subjects’ demographic characteristics. 
    more » « less
  2. Fair resource allocation is one of the most important topics in communication networks. Existing solutions almost exclusively assume each user utility function is known and concave. This paper seeks to answer the following question: how to allocate resources when utility functions are unknown, even to the users? This answer has become increasingly important in the next-generation AI-aware communication networks where the user utilities are complex and their closed-forms are hard to obtain. In this paper, we provide a new solution using a distributed and data-driven bilevel optimization approach, where the lower level is a distributed network utility maximization (NUM) algorithm with concave surrogate utility functions, and the upper level is a data-driven learning algorithm to find the best surrogate utility functions that maximize the sum of true network utility. The proposed algorithm learns from data samples (utility values or gradient values) to autotune the surrogate utility functions to maximize the true network utility, so works for unknown utility functions. For the general network, we establish the nonasymptotic convergence rate of the proposed algorithm with nonconcave utility functions. The simulations validate our theoretical results and demonstrate the great effectiveness of the proposed method in a real-world network. 
    more » « less