- Award ID(s):
- 1600307
- NSF-PAR ID:
- 10049463
- Date Published:
- Journal Name:
- Mathematical Finance
- ISSN:
- 0960-1627
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract This paper solves the consumption‐investment problem under Epstein‐Zin preferences on a random horizon. In an incomplete market, we take the random horizon to be a stopping time adapted to the market filtration, generated by all observable, but not necessarily tradable, state processes. Contrary to prior studies, we do not impose any fixed upper bound for the random horizon, allowing for truly unbounded ones. Focusing on the empirically relevant case where the risk aversion and the elasticity of intertemporal substitution are both larger than one, we characterize the optimal consumption and investment strategies using backward stochastic differential equations with superlinear growth on unbounded random horizons. This characterization, compared with the classical fixed‐horizon result, involves an additional stochastic process that serves to capture the randomness of the horizon. As demonstrated in two concrete examples, changing from a fixed horizon to a random one drastically alters the optimal strategies.
-
Fair resource allocation is one of the most important topics in communication networks. Existing solutions almost exclusively assume each user utility function is known and concave. This paper seeks to answer the following question: how to allocate resources when utility functions are unknown, even to the users? This answer has become increasingly important in the next-generation AI-aware communication networks where the user utilities are complex and their closed-forms are hard to obtain. In this paper, we provide a new solution using a distributed and data-driven bilevel optimization approach, where the lower level is a distributed network utility maximization (NUM) algorithm with concave surrogate utility functions, and the upper level is a data-driven learning algorithm to find the best surrogate utility functions that maximize the sum of true network utility. The proposed algorithm learns from data samples (utility values or gradient values) to autotune the surrogate utility functions to maximize the true network utility, so works for unknown utility functions. For the general network, we establish the nonasymptotic convergence rate of the proposed algorithm with nonconcave utility functions. The simulations validate our theoretical results and demonstrate the great effectiveness of the proposed method in a real-world network.more » « less