skip to main content


Title: High-Rate Long Cycle-Life Li-Air Battery Aided by Bifunctional InX3 (X = I and Br) Redox Mediators
Redox mediators (RMs) are solution-based additives that have been extensively used to reduce the charge potential and increase the energy efficiency of Li–oxygen (Li–O2) batteries. However, in the presence of RMs, achieving a long cycle-life operation of Li–O2 batteries at a high current rate is still a major challenge. In this study, we discover a novel synergy among InX3 (X = I and Br) bifunctional RMs, molybdenum disulfide (MoS2) nanoflakes as the air electrode, dimethyl sulfoxide/ionic liquid hybrid electrolyte, and LiTFSI as a salt to achieve long cycle-life operations of Li–O2 batteries in a dry air environment at high charge–discharge rates. Our results indicate that batteries with InI3 operate up to 450 cycles with a current density of 0.5 A g–1 and 217 cycles with a current density of 1 A g–1 at a fixed capacity of 1 A h g–1. Batteries with InBr3 operate up to 600 cycles with a current density of 1 A g–1. These batteries can also operate at a higher charge rate of 2 A g–1 up to 200 cycles (for InBr3) and 160 cycles (for InI3). Our experimental and computational results reveal that while X3– is the source of the redox mediator, LiX at the MoS2 cathode, In3+ reacts on the lithium anode side to form a protective layer on the surface, thus acting as an effective bifunctional RM in a dry air environment. This evidence for a simultaneous improvement in the current rates and cycle life of a battery in a dry air atmosphere opens a new direction for research for advanced energy storage systems.  more » « less
Award ID(s):
1729420
NSF-PAR ID:
10301714
Author(s) / Creator(s):
Date Published:
Journal Name:
ACS applied materials interfaces
Volume:
13
Issue:
4
ISSN:
1944-8244
Page Range / eLocation ID:
4915–4922
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Lithium–oxygen (Li–O2) batteries possess the highest theoretical energy density (3500 Wh kg−1), which makes them attractive candidates for modern electronics and transportation applications. In this work, an inexpensive, flexible, and wearable Li–O2 battery based on the bifunctional redox mediator of InBr3, MoS2 cathode catalyst, and Fomblin-based oxygen permeable membrane that enable long-cycle-life operation of the battery in pure oxygen, dry air, and ambient air is designed, fabricated, and tested. The battery operates in ambient air with an open system air-breathing architecture and exhibits excellent cycling up to 240 at the high current density of 1 A g−1 with a relative humidity of 75%. The electrochemical performance of the battery including deep-discharge capacity, and rate capability remains almost identical after 1000 cycle in a bending fatigue test. This finding opens a new direction for utilizing high performance Li–O2 batteries for applications in the field of flexible and wearable electronics. 
    more » « less
  2. Lithium–CO2 batteries are attractive energy‐storage systems for fulfilling the demand of future large‐scale applications such as electric vehicles due to their high specific energy density. However, a major challenge with Li–CO2 batteries is to attain reversible formation and decomposition of the Li2CO3 and carbon discharge products. A fully reversible Li–CO2 battery is developed with overall carbon neutrality using MoS2 nanoflakes as a cathode catalyst combined with an ionic liquid/dimethyl sulfoxide electrolyte. This combination of materials produces a multicomponent composite (Li2CO3/C) product. The battery shows a superior long cycle life of 500 for a fixed 500 mAh g−1 capacity per cycle, far exceeding the best cycling stability reported in Li–CO2 batteries. The long cycle life demonstrates that chemical transformations, making and breaking covalent C-O bonds can be used in energy‐storage systems. Theoretical calculations are used to deduce a mechanism for the reversible discharge/charge processes and explain how the carbon interface with Li2CO3 provides the electronic conduction needed for the oxidation of Li2CO3 and carbon to generate the CO2 on charge. This achievement paves the way for the use of CO2 in advanced energy‐storage systems. 
    more » « less
  3. In Li–S batteries, the insulating nature of sulfur and Li 2 S causes enormous challenges, such as high polarization and low active material utilization. The nucleation of the solid discharge product, Li 2 S, during the discharge cycle, and the activation of Li 2 S in the subsequent charge cycle, cause a potential challenge that needs to be overcome. Moreover, the shuttling of soluble lithium polysulfide intermediate species results in active material loss and early capacity fade. In this study, we have used thiourea as an electrolyte additive and showed that it serves as both a redox mediator to overcome the Li 2 S activation energy barrier and a shuttle inhibitor to mitigate the notorious polysulfide shuttling via the investigation of thiourea redox activity, shuttle current measurements and study of Li 2 S activation. The steady-state shuttle current of the Li–S battery shows a 6-fold drop when 0.02 M thiourea is added to the standard electrolyte. Moreover, by adding thiourea, the charge plateau for the first cycle of the Li 2 S based cathodes shifts from 3.5 V (standard ether electrolyte) to 2.5 V (with 0.2 M thiourea). Using this additive, the capacity of the Li–S battery stabilizes at ∼839 mA h g −1 after 5 cycles and remains stable over 700 cycles with a low capacity decay rate of 0.025% per cycle, a tremendous improvement compared to the reference battery that retains only ∼350 mA h g −1 after 300 cycles. In the end, to demonstrate the practical and broad applicability of thiourea in overcoming sulfur-battery challenges and in eliminating the need for complex electrode design, we study two additional battery systems – lithium metal-free cells with a graphite anode and Li 2 S cathode, and Li–S cells with simple slurry-based cathodes fabricated via blending commercial carbon black/S and a binder. We believe that this study manifests the advantages of redox active electrolyte additives to overcome several bottlenecks in the Li–S battery field. 
    more » « less
  4. Abstract

    Li‐air batteries are considered strong candidates for the next‐generation energy storage systems designed for electrical transportation. However, low cyclability and current rates are two major drawbacks that hinder them from further realization. These issues necessitate the discovery of novel materials to significantly enhance the redox process of discharge products. In this study, a novel catalytic system comprised of tin sulfide (SnS) nanoflakes as a solid catalyst and tin iodide (SnI2) as a dual‐functional electrolyte additive is discovered. This system enables operating the battery at high current rates up to 10 000 mA g−1(corresponding to 1 mA cm−2). The SnS catalyst shows outstanding catalytic activity for both oxygen reduction and evolution reactions compared to carbon, noble metals, and other transition metal dichalcogenides. It also exhibits good structural integrity at high rates. The computations indicate numerous possible oxygen reduction sites without oxygen dissociations on the SnS surface through solution mechanism that is likely responsible for the formation of Li2O2. The calculations also indicate that the role of the SnI2is not only reacting with the lithium anode to provide protection but reducing the charge potential by promoting catalytic decomposition of the Li2O2. This work provides new novel additives for designing high‐rate Li‐air batteries.

     
    more » « less
  5. Abstract

    Lithium‐air batteries based on CO2reactant (Li–CO2) have recently been of interest because it has been found that reversible Li/CO2electrochemistry is feasible. In this study, a new medium‐entropy cathode catalyst, (NbTa)0.5BiS3, that enables the reversible electrochemistry to operate at high rates is presented. This medium entropy cathode catalyst is combined with an ionic liquid‐based electrolyte blend to give a Li–CO2battery that operates at high current density of 5000 mA g−1and capacity of 5000 mAh g−1for up to 125 cycles, far exceeding reported values in the literature for this type of battery. The higher rate performance is believed to be due to the greater stability of the multi‐element (NbTa)0.5BiS3catalyst because of its higher entropy compared to previously used catalysts with a smaller number of elements with lower entropies. Evidence for this comes from computational studies giving very low surface energies (high surface stability) for (NbTa)0.5BiS3and transmission electron microscopystudies showing the structure being retained after cycling. In addition, the calculations indicate that Nb‐terminated surface promotes Li–CO2electrochemistry resulting in Li2CO3and carbon formation, consistent with the products found in the cell. These results open new direction to design and develop high‐performance Li–CO2batteries.

     
    more » « less