skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Asymptotically Optimal Kinodynamic Planning Using Bundles of Edges
Using sampling to estimate the connectivity of high-dimensional configuration spaces has been the theoretical underpinning for effective sampling-based motion planners. Typical strategies either build a roadmap, or a tree as the underlying search structure that connects sampled configurations, with a focus on guaranteeing completeness and optimality as the number of samples tends to infinity. Roadmap-based planners allow preprocessing the space, and can solve multiple kinematic motion planning problems, but need a steering function to connect pairwise-states. Such steering functions are difficult to define for kinodynamic systems, and limit the applicability of roadmaps to motion planning problems with dynamical systems. Recent advances in the analysis of single query tree-based planners has shown that forward search trees based on random propagations are asymptotically optimal. The current work leverages these recent results and proposes a multi-query framework for kinodynamic planning. Bundles of kinodynamic edges can be sampled to cover the state space before the query arrives. Then, given a motion planning query, the connectivity of the state space reachable from the start can be recovered from a forward search tree reasoning about a local neighborhood of the edge bundle from each tree node. The work demonstrates theoretically that considering any constant radial neighborhood during this process is sufficient to guarantee asymptotic optimality. Experimental validation in five and twelve dimensional simulated systems also highlights the ability of the proposed edge bundles to express high-quality kinodynamic solutions. Our approach consistently finds higher quality solutions compared to SST, and RRT, often with faster initial solution times. The strategy of sampling kinodynamic edges is demonstrated to be a promising new paradigm.  more » « less
Award ID(s):
2008720
PAR ID:
10301750
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2021 IEEE International Conference on Robotics and Automation (ICRA)
Page Range / eLocation ID:
9988 to 9994
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sampling-based motion planners such as RRT* and BIT*, when applied to kinodynamic motion planning, rely on steering functions to generate time-optimal solutions connecting sampled states. Implementing exact steering functions requires either analytical solutions to the time-optimal control problem, or nonlinear programming (NLP) solvers to solve the boundary value problem given the system's kinodynamic equations. Unfortunately, analytical solutions are unavailable for many real-world domains, and NLP solvers are prohibitively computationally expensive, hence fast and optimal kinodynamic motion planning remains an open problem. We provide a solution to this problem by introducing State Supervised Steering Function (S3F), a novel approach to learn time-optimal steering functions. S3F is able to produce near-optimal solutions to the steering function orders of magnitude faster than its NLP counterpart. Experiments conducted on three challenging robot domains show that RRT* using S3F significantly outperforms state-of-the-art planning approaches on both solution cost and runtime. We further provide a proof of probabilistic completeness of RRT* modified to use S3F. 
    more » « less
  2. We present a review and reformulation of manifold constrained sampling-based motion planning within a unifying framework, IMACS (implicit manifold configuration space). IMACS enables a broad class of motion planners to plan in the presence of manifold constraints, decoupling the choice of motion planning algorithm and method for constraint adherence into orthogonal choices. We show that implicit configuration spaces defined by constraints can be presented to sampling-based planners by addressing two key fundamental primitives, sampling and local planning, and that IMACS preserves theoretical properties of probabilistic completeness and asymptotic optimality through these primitives. Within IMACS, we implement projection- and continuation-based methods for constraint adherence, and demonstrate the framework on a range of planners with both methods in simulated and realistic scenarios. Our results show that the choice of method for constraint adherence depends on many factors and that novel combinations of planners and methods of constraint adherence can be more effective than previous approaches. Our implementation of IMACS is open source within the Open Motion Planning Library and is easily extended for novel planners and constraint spaces.

     
    more » « less
  3. This paper presents an online, robust, and model-free motion planning framework for kinodynamic systems. In particular, we employ a Q-learning algorithm for a two player zero-sum dynamic game to account for worst-case disturbances and kinodynamic constraints. We use one critic, and two actor approximators to solve online the finite horizon minimax problem with a form of integral reinforcement learning. We then leverage a terminal state evaluation structure to facilitate the online implementation. A static obstacle augmentation, and a local replanning framework is presented to guarantee safe kinodynamic motion planning. Rigorous Lyapunov-based proofs are provided to guarantee closed-loop stability, while maintaining robustness and optimality. We finally evaluate the efficacy of the proposed framework with simulations and we provide a qualitative comparison of kinodynamic motion planning techniques 
    more » « less
  4. Sampling-based algorithms solve the path planning problem by generating random samples in the search space and incrementally growing a connectivity graph or a tree. Conventionally, the sampling strategy used in these algorithms is biased towards exploration to acquire information about the search-space. In contrast, this work proposes an optimization-based procedure that generates new samples so as to improve the cost-to-come value of vertices in a given neighborhood. The application of the proposed algorithm adds an exploitative bias to sampling and results in a faster convergence1 to the optimal solution compared to other state-of-the-art sampling techniques. This is demonstrated using benchmarking experiments performed for 7 DOF Panda and 14 DOF Baxter robots. 
    more » « less
  5. Shell, Dylan A ; Toussaint, Marc (Ed.)
    We present a learning-based approach to prove infeasibility of kinematic motion planning problems. Sampling-based motion planners are effective in high-dimensional spaces but are only probabilistically complete. Consequently, these planners cannot provide a definite answer if no plan exists, which is important for high-level scenarios, such as task-motion planning. We propose a combination of bidirectional sampling-based planning (such as RRT-connect) and machine learning to construct an infeasibility proof alongside the two search trees. An infeasibility proof is a closed manifold in the obstacle region of the configuration space that separates the start and goal into disconnected components of the free configuration space. We train the manifold using common machine learning techniques and then triangulate the manifold into a polytope to prove containment in the obstacle region. Under assumptions about learning hyper-parameters and robustness of configuration space optimization, the output is either an infeasibility proof or a motion plan. We demonstrate proof construction for 3-DOF and 4-DOF manipulators and show improvement over a previous algorithm. 
    more » « less