skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Tutorial on Learned Multi-dimensional Indexes
Recently, Machine Learning (ML, for short) has been successfully applied to database indexing. Initial experimentation on Learned Indexes has demonstrated better search performance and lower space requirements than their traditional database counterparts. Numerous attempts have been explored to extend learned indexes to the multi-dimensional space. This makes learned indexes potentially suitable for spatial databases. The goal of this tutorial is to provide up-to-date coverage of learned indexes both in the single and multi-dimensional spaces. The tutorial covers over 25 learned indexes. The tutorial navigates through the space of learned indexes through a taxonomy that helps classify the covered learned indexes both in the single and multi-dimensional spaces.  more » « less
Award ID(s):
1815796 1910216
PAR ID:
10301808
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
SIGSPATIAL '20: Proceedings of the 28th International Conference on Advances in Geographic Information Systems
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stefanidis, K.; Golab, L. (Ed.)
    Secondary indexes in relational database systems are traditionally built under the assumption that one data record maps to one indexed value. Nowadays, particularly in NoSQL systems, single data records can hold collections of values that users want to access efficiently in an ad-hoc manner. Multi-valued indexes aim to give users the best of both worlds: (i) to keep a more natural data model of records with collections of values, and (ii) to reap the benefits of a secondary index. In this paper, we detail the steps taken to realize multi-valued indexes in AsterixDB, a Big Data management system with a structured query language operating over a collection of docu- ments. This includes (a) creating the specification language for such indexes, (b) illustrating data flows for bulk-loading and maintaining an index, and (c) discussing query plans to take advantage of multi-valued indexes for use in predicates with existential and universal quantification. We conclude with ex- periments that compare AsterixDB multi-valued indexes against similar indexes in MongoDB and Couchbase Query. 
    more » « less
  2. Selecting indexes capable of reducing the cost of query processing in database systems is a challenging task, especially in large-scale applications. Quantum computing has been investigated with promising results in areas related to database management, such as query optimization, transaction scheduling, and index tuning. Promising results have also been seen when reinforcement learning is applied for database tuning in classical computing. However, there is no existing research with implementation details and experiment results for index tuning that takes advantage of both quantum computing and reinforcement learning. This paper proposes a new algorithm called QRLIT that uses the power of quantum computing and reinforcement learning for database index tuning. Experiments using the database TPC-H benchmark show that QRLIT exhibits superior performance and a faster convergence compared to its classical counterpart. 
    more » « less
  3. This work proposes a new computational framework for learning a structured generative model for real-world datasets. In particular, we propose to learn a Closed-loop Transcriptionbetween a multi-class, multi-dimensional data distribution and a Linear discriminative representation (CTRL) in the feature space that consists of multiple independent multi-dimensional linear subspaces. In particular, we argue that the optimal encoding and decoding mappings sought can be formulated as a two-player minimax game between the encoder and decoderfor the learned representation. A natural utility function for this game is the so-called rate reduction, a simple information-theoretic measure for distances between mixtures of subspace-like Gaussians in the feature space. Our formulation draws inspiration from closed-loop error feedback from control systems and avoids expensive evaluating and minimizing of approximated distances between arbitrary distributions in either the data space or the feature space. To a large extent, this new formulation unifies the concepts and benefits of Auto-Encoding and GAN and naturally extends them to the settings of learning a both discriminative and generative representation for multi-class and multi-dimensional real-world data. Our extensive experiments on many benchmark imagery datasets demonstrate tremendous potential of this new closed-loop formulation: under fair comparison, visual quality of the learned decoder and classification performance of the encoder is competitive and arguably better than existing methods based on GAN, VAE, or a combination of both. Unlike existing generative models, the so-learned features of the multiple classes are structured instead of hidden: different classes are explicitly mapped onto corresponding independent principal subspaces in the feature space, and diverse visual attributes within each class are modeled by the independent principal components within each subspace. 
    more » « less
  4. Network embedding has gained more attentions in recent years. It has been shown that the learned low-dimensional node vector representations could advance a myriad of graph mining tasks such as node classification, community detection, and link prediction. A vast majority of the existing efforts are overwhelmingly devoted to single-layered networks or homogeneous networks with a single type of nodes and node interactions. However, in many real-world applications, a variety of networks could be abstracted and presented in a multilayered fashion. Typical multi-layered networks include critical infrastructure systems, collaboration platforms, social recommender systems, to name a few. Despite the widespread use of multi-layered networks, it remains a daunting task to learn vector representations of different types of nodes due to the bewildering combination of both within-layer connections and cross-layer network dependencies. In this paper, we study a novel problem of multi-layered network embedding. In particular, we propose a principled framework – MANE to model both within-layer connections and cross-layer network dependencies simultaneously in a unified optimization framework for embedding representation learning. Experiments on real-world multi-layered networks corroborate the effectiveness of the proposed framework. 
    more » « less
  5. State-of-the-art, scalable, indexing techniques in location-based image data retrieval are primarily focused on supporting window and range queries. However, support of these indexes is not well explored when there are multiple spatially similar images to retrieve for a given geographic location. Adoption of existing spatial indexes such as the kD-tree pose major scalability impediments. In response, this work proposes a novel scalable, key-value, database oriented, secondary-memory based, spatial index to retrieve the top k most spatially similar images to a given geographic location. The proposed index introduces a 4-dimensional Hilbert index (4DHI). This space filling curve is implemented atop HBase (a key-value database). Experiments performed on both synthetically generated and real world data demonstrate comparable accuracy with MD-HBase (a state of the art, scalable, multidimensional point data management system) and better performance. Specifically, 4DHI yielded 34% - 39% storage improvements compared to the disk consumption of the original index of MD-HBase. The compactness in 4DHI also yielded up to 3.4 and 4.7 fold gains when retrieving 6400 and 12800 neighbours, respectively; compared to the adoption of original index of MD-HBase for respective neighbour searches. An optimization technique termed “Bounding Box Displacement” (BBD) is introduced to improve the accuracy of the top k approximations in relation to the results of in-memory kD-tree. Finally, a method of reducing row key length is also discussed for the proposed 4DHI to further improve the storage efficiency and scalability in managing large numbers of remotely sensed images. 
    more » « less