The proliferation of mobile phones and location-based services has given rise to an explosive growth in spatial data. In order to enable spatial data analytics, spatial data needs to be streamed into a data stream warehouse system that can provide real-time analytical results over the most recent and historical spatial data in the warehouse. Existing data stream warehouse systems are not tailored for spatial data. In this paper, we introduce the
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Aref, Walid G. (Ed.)
STAR system.STAR is a distributed in-memory data stream warehouse system that provides low-latency and up-to-date analytical results over a fast-arriving spatial data stream.STAR supports both snapshot and continuous queries that are composed of aggregate functions and ad hoc query constraints over spatial, textual, and temporal data attributes.STAR implements a cache-based mechanism to facilitate the processing of snapshot queries that collectively utilizes the techniques of query-based caching (i.e., view materialization) and object-based caching. Moreover, to speed-up processing continuous queries,STAR proposes a novel index structure that achieves high efficiency in both object checking and result updating. Extensive experiments over real data sets demonstrate the superior performance ofSTAR over existing systems. -
Memory disaggregation (MD) allows for scalable and elastic data center design by separating compute (CPU) from memory. With MD, compute and memory are no longer coupled into the same server box. Instead, they are connected to each other via ultra-fast networking such as RDMA. MD can bring many advantages, e.g., higher memory utilization, better independent scaling (of compute and memory), and lower cost of ownership. This paper makes the case that MD can fuel the next wave of innovation on database systems. We observe that MD revives the great debate of shared what in the database community. We envision that
distributed shared-memory databases (DSM-DB, for short) - that have not received much attention before - can be promising in the future with MD. We present a list of challenges and opportunities that can inspire next steps in system design making the case for DSM-DB. -
Waves of misery is a phenomenon where spikes of many node splits occur over short periods of time in tree indexes. Waves of misery negatively affect the performance of tree indexes in insertion-heavy workloads. Waves of misery have been first observed in the context of the B-tree, where these waves cause unpredictable index performance. In particular, the performance of search and index-update operations deteriorate when a wave of misery takes place, but is more predictable between the waves. This paper investigates the presence or lack of waves of misery in several R-tree variants, and studies the extent of which these waves impact the performance of each variant. Interestingly, although having poorer query performance, the Linear and Quadratic R-trees are found to be more resilient to waves of misery than both the Hilbert and R*-trees. This paper presents several techniques to reduce the impact in performance of the waves of misery for the Hilbert and R*-trees. One way to eliminate waves of misery is to force node splits to take place at regular times before nodes become full to achieve deterministic performance. The other way is that upon splitting a node, do not split it evenly but rather at different node utilization factors. This allows leaf nodes not to fill at the same pace. We study the impact of two new techniques to mitigate waves of misery after the tree index has been constructed, namely Regular Elective Splits (RES, for short) and Unequal Random Splits (URS, for short). Our experimental investigation highlights the trade-offs in performance of the introduced techniques and the pros and cons of each technique. -
null (Ed.)The proliferation of GPS-enabled devices has led to the development of numerous location-based services. These services need to process massive amounts of streamed spatial data in real-time. The current scale of spatial data cannot be handled using centralized systems. This has led to the development of distributed spatial streaming systems. Existing systems are using static spatial partitioning to distribute the workload. In contrast, the real-time streamed spatial data follows non-uniform spatial distributions that are continuously changing over time. Distributed spatial streaming systems need to react to the changes in the distribution of spatial data and queries. This article introduces SWARM, a lightweight adaptivity protocol that continuously monitors the data and query workloads across the distributed processes of the spatial data streaming system and redistributes and rebalances the workloads as soon as performance bottlenecks get detected. SWARM is able to handle multiple query-execution and data-persistence models. A distributed streaming system can directly use SWARM to adaptively rebalance the system’s workload among its machines with minimal changes to the original code of the underlying spatial application. Extensive experimental evaluation using real and synthetic datasets illustrate that, on average, SWARM achieves 2 improvement in throughput over a static grid partitioning that is determined based on observing a limited history of the data and query workloads. Moreover, SWARM reduces execution latency on average 4 compared with the other technique.more » « less
-
null (Ed.)Many applications require update-intensive work-loads on spatial objects, e.g., social-network services and shared-riding services that track moving objects (devices). By buffering insert and delete operations in memory, the Log Structured Merge Tree (LSM) has been used widely in various systems because of its ability to handle insert-intensive workloads. While the focus on LSM has been on key-value stores and their optimizations, there is a need to study how to efficiently support LSM-based secondary indexes. We investigate the augmentation of a main-memory-based memo structure into an LSM secondary index structure to handle update-intensive workloads efficiently. We conduct this study in the context of an R-tree-based secondary index. In particular, we introduce the LSM RUM-tree that demonstrates the use of an Update Memo in an LSM-based R-tree to enhance the performance of the R-tree's insert, delete, update, and search operations. The LSM RUM-tree introduces novel strategies to reduce the size of the Update Memo to be a light-weight in-memory structure that is suitable for handling update-intensive workloads without introducing significant over-head. Experimental results using real spatial data demonstrate that the LSM RUM-tree achieves up to 9.6x speedup on update operations and up to 2400x speedup on query processing over the existing LSM R-tree implementations.more » « less
-
null (Ed.)Recently, Machine Learning (ML, for short) has been successfully applied to database indexing. Initial experimentation on Learned Indexes has demonstrated better search performance and lower space requirements than their traditional database counterparts. Numerous attempts have been explored to extend learned indexes to the multi-dimensional space. This makes learned indexes potentially suitable for spatial databases. The goal of this tutorial is to provide up-to-date coverage of learned indexes both in the single and multi-dimensional spaces. The tutorial covers over 25 learned indexes. The tutorial navigates through the space of learned indexes through a taxonomy that helps classify the covered learned indexes both in the single and multi-dimensional spaces.more » « less
-
null (Ed.)The wide spread of GPS-enabled devices and the Internet of Things (IoT) has increased the amount of spatial data being generated every second. The current scale of spatial data cannot be handled using centralized systems. This has led to the development of distributed spatial data streaming systems that scale to process in real-time large amounts of streamed spatial data. The performance of distributed streaming systems relies on how even the workload is distributed among their machines. However, it is challenging to estimate the workload of each machine because spatial data and query streams are skewed and rapidly change with time and users' interests. Moreover, a distributed spatial streaming system often does not maintain a global system workload state because it requires high network and processing overheads to be collected from the machines in the system. This paper introduces TrioStat; an online workload estimation technique that relies on a probabilistic model for estimating the workload of partitions and machines in a distributed spatial data streaming system. It is infeasible to collect and exchange statistics with a centralized unit because it requires high network overhead. Instead, TrioStat uses a decentralised technique to collect and maintain the required statistics in real-time locally in each machine. TrioStat enables distributed spatial data streaming systems to compare the workloads of machines as well as the workloads of data partitions. TrioStat requires minimal network and storage overhead. Moreover, the required storage is distributed across the system's machines.more » « less