skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 12 until 2:00 AM ET on Friday, June 13 due to maintenance. We apologize for the inconvenience.


Title: The Relative Contribution to Heavy Metals Production from Binary Neutron Star Mergers and Neutron Star–Black Hole Mergers
Award ID(s):
1806278
PAR ID:
10302114
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
920
Issue:
1
ISSN:
2041-8205
Page Range / eLocation ID:
L3
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The precise measurement of neutron star (NS) spins can provide important insight into the formation and evolution of compact binaries containing NSs. While traditional methods of NS spin measurement rely on pulsar observations, gravitational-wave detections offer a complementary avenue. However, determining component spins with gravitational waves is hindered by the small dimensionless spins of the NSs and the degeneracy in the mass and spin parameters. This degeneracy can be addressed by the inclusion of higher-order modes in the waveform, which are important for systems with unequal masses. This study shows the suitability of NS–black hole mergers, which are naturally mass-asymmetric, for precise NS spin measurements. We explore the effects of the black hole masses and spins, higher-mode content, inclination angles, and detector sensitivity on the measurement of NS spin. We find that networks with next-generation observatories like the Cosmic Explorer and the Einstein Telescope can distinguish NS dimensionless spin of 0.04 (0.1) from zero at 1σconfidence for events within ∼350 (∼1000) Mpc. Networks with A+ and Adetectors achieve similar distinction within ∼30 (∼70) Mpc and ∼50 (∼110) Mpc, respectively. 
    more » « less
  2. null (Ed.)