skip to main content


Title: Discovery of a possible splashback feature in the intracluster light of MACS J1149.5+2223
ABSTRACT We present an analysis of the intracluster light (ICL) in the Frontier Field Cluster MACS J1149.5+2223 (z = 0.544), which combines new and archival Hubble WFC3/IR imaging to provide continuous radial coverage out to 2.8 Mpc from the brightest cluster galaxy (BCG). Employing careful treatment of potential systematic biases and using data at the largest radii to determine the background sky level, we reconstruct the surface brightness profile out to a radius of 2 Mpc. This radius is the largest to which the ICL has been measured for an individual cluster. Within this radius, we measure a total luminosity of 1.5 × 1013 L⊙ for the BCG plus ICL. From the profile and its logarithmic slope, we identify the transition from the BCG to ICL at r ∼ 70 kpc. Remarkably, we also detect an apparent inflection in the profile centred in the 1.2–1.7 Mpc (0.37–0.52 r200m) radial bin, a signature of an infall caustic in the stellar distribution. Based upon the shape and strength of the feature, we interpret it as potentially being at the splashback radius, although the radius is smaller than theoretical predictions. If this is the splashback radius, then it is the first such detection in the ICL and the first detection of the splashback radius for an individual cluster. Similar analyses should be possible with the other Frontier Field clusters, and eventually with clusters observed by the Euclid and Roman missions.  more » « less
Award ID(s):
1715609
NSF-PAR ID:
10302174
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
507
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
963 to 970
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present a detection of the splashback feature around galaxy clusters selected using the Sunyaev–Zel’dovich (SZ) signal. Recent measurements of the splashback feature around optically selected galaxy clusters have found that the splashback radius, rsp, is smaller than predicted by N-body simulations. A possible explanation for this discrepancy is that rsp inferred from the observed radial distribution of galaxies is affected by selection effects related to the optical cluster-finding algorithms. We test this possibility by measuring the splashback feature in clusters selected via the SZ effect in data from the South Pole Telescope SZ survey and the Atacama Cosmology Telescope Polarimeter survey. The measurement is accomplished by correlating these cluster samples with galaxies detected in the Dark Energy Survey Year 3 data. The SZ observable used to select clusters in this analysis is expected to have a tighter correlation with halo mass and to be more immune to projection effects and aperture-induced biases, potentially ameliorating causes of systematic error for optically selected clusters. We find that the measured rsp for SZ-selected clusters is consistent with the expectations from simulations, although the small number of SZ-selected clusters makes a precise comparison difficult. In agreement with previous work, when using optically selected redMaPPer clusters with similar mass and redshift distributions, rsp is ∼2σ smaller than in the simulations. These results motivate detailed investigations of selection biases in optically selected cluster catalogues and exploration of the splashback feature around larger samples of SZ-selected clusters. Additionally, we investigate trends in the galaxy profile and splashback feature as a function of galaxy colour, finding that blue galaxies have profiles close to a power law with no discernible splashback feature, which is consistent with them being on their first infall into the cluster. 
    more » « less
  2. Abstract We measure the projected number density profiles of galaxies and the splashback feature in clusters selected by the Sunyaev–Zel’dovich effect from the Advanced Atacama Cosmology Telescope (AdvACT) survey using galaxies observed by the Dark Energy Survey (DES). The splashback radius is consistent with CDM-only simulations and is located at 2.4 − 0.4 + 0.3 Mpc h − 1 . We split the galaxies on color and find significant differences in their profile shapes. Red and green-valley galaxies show a splashback-like minimum in their slope profile consistent with theory, while the bluest galaxies show a weak feature at a smaller radius. We develop a mapping of galaxies to subhalos in simulations and assign colors based on infall time onto their hosts. We find that the shift in location of the steepest slope and different profile shapes can be mapped to the average time of infall of galaxies of different colors. The steepest slope traces a discontinuity in the phase space of dark matter halos. By relating spatial profiles to infall time, we can use splashback as a clock to understand galaxy quenching. We find that red galaxies have on average been in clusters over 3.2 Gyr, green galaxies about 2.2 Gyr, while blue galaxies have been accreted most recently and have not reached apocenter. Using the full radial profiles, we fit a simple quenching model and find that the onset of galaxy quenching occurs after a delay of about a gigayear and that galaxies quench rapidly thereafter with an exponential timescale of 0.6 Gyr. 
    more » « less
  3. null (Ed.)
    ABSTRACT We present measurements of the radial profiles of the mass and galaxy number density around Sunyaev–Zel’dovich (SZ)-selected clusters using both weak lensing and galaxy counts. The clusters are selected from the Atacama Cosmology Telescope Data Release 5 and the galaxies from the Dark Energy Survey Year 3 data set. With signal-to-noise ratio of 62 (45) for galaxy (weak lensing) profiles over scales of about 0.2–20 h−1 Mpc, these are the highest precision measurements for SZ-selected clusters to date. Because SZ selection closely approximates mass selection, these measurements enable several tests of theoretical models of the mass and light distribution around clusters. Our main findings are: (1) The splashback feature is detected at a consistent location in both the mass and galaxy profiles and its location is consistent with predictions of cold dark matter N-body simulations. (2) The full mass profile is also consistent with the simulations. (3) The shapes of the galaxy and lensing profiles are remarkably similar for our sample over the entire range of scales, from well inside the cluster halo to the quasilinear regime. We measure the dependence of the profile shapes on the galaxy sample, redshift, and cluster mass. We extend the Diemer & Kravtsov model for the cluster profiles to the linear regime using perturbation theory and show that it provides a good match to the measured profiles. We also compare the measured profiles to predictions of the standard halo model and simulations that include hydrodynamics. Applications of these results to cluster mass estimation, cosmology, and astrophysics are discussed. 
    more » « less
  4. ABSTRACT

    We critically examine the methodology behind the claimed observational detection of halo assembly bias using optically selected galaxy clusters by Miyatake et al. and More et al. We mimic the optical cluster detection algorithm and apply it to two different mock catalogues generated from the Millennium simulation galaxy catalogue, one in which halo assembly bias signal is present, while the other in which the assembly bias signal has been expressly erased. We split each of these cluster samples into two using the average cluster-centric distance of the member galaxies to measure the difference in the clustering strength of the subsamples with respect to each other. We observe that the subsamples split by cluster-centric radii show differences in clustering strength, even in the catalogue where the true assembly bias signal was erased. We show that this is a result of contamination of the member galaxy sample from interlopers along the line of sight. This undoubtedly shows that the particular methodology adopted in the previous studies cannot be used to claim a detection of the assembly bias signal. We figure out the tell-tale signatures of such contamination, and show that the observational data also show similar signatures. Furthermore, we also show that projection effects in optical galaxy clusters can bias the inference of the 3D edges of galaxy clusters (splashback radius), so appropriate care should be taken while interpreting the splashback radius of optical clusters.

     
    more » « less
  5. ABSTRACT

    We illuminate the altered evolution of galaxies in clusters compared to central galaxies by tracking galaxies in the IllustrisTNG300 simulation as they enter isolated clusters of mass 1013 < M200,mean/M⊙ < 1015 (at z = 0). We demonstrate significant trends in galaxy properties with residence time (time since first infall) and that there is a population of galaxies that remain star forming even many Gyr after their infall. By comparing the properties of galaxies at their infall time to their properties at z = 0, we show how scaling relations, like the stellar-to-halo mass ratio, shift as galaxies live in the cluster environment. Galaxies with a residence time of 10 Gyr increase their stellar-to-halo mass ratio, by around 1 dex. As measurements of the steepest slope of the galaxy cluster number density profile (Rst), frequently used as a proxy for the splashback radius, have been shown to depend strongly on galaxy selection, we show how Rst depends on galaxy residence time. Using galaxies with residence times less than one cluster crossing time (≈5 Gyr) to measure Rst leads to significant offsets relative to using the entire galaxy population. Galaxies must have had the opportunity to ‘splash back’ to the first caustic to trace out a representative value of Rst, potentially leading to issues for galaxy surveys using ultraviolet-selected galaxies. Our work demonstrates that the evolution of cluster galaxies continues well into their lifetime in the cluster and departs from a typical central galaxy evolutionary path.

     
    more » « less