Kymissis, Ioannis; List-Kratochvil, Emil J.; Inal, Sahika
(Ed.)
Oxygen-release microspheres capable of releasing oxygen in response to environmental oxygen level to improve stem cell survival and tissue regeneration in ischemic hindlimbs
- Award ID(s):
- 1922857
- PAR ID:
- 10302208
- Date Published:
- Journal Name:
- Journal of Controlled Release
- Volume:
- 331
- Issue:
- C
- ISSN:
- 0168-3659
- Page Range / eLocation ID:
- 376 to 389
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Nitrite is a central molecule in the nitrogen cycle because nitrite oxidation to nitrate (an aerobic process) retains fixed nitrogen in a system and its reduction to dinitrogen gas (anaerobic) reduces the fixed nitrogen inventory. Despite its acknowledged requirement for oxygen, nitrite oxidation is observed in oxygen-depleted layers of the ocean’s oxygen minimum zones (OMZs), challenging the current understanding of OMZ nitrogen cycling. Previous attempts to determine whether nitrite-oxidizing bacteria in the anoxic layer differ from known nitrite oxidizers in the open ocean were limited by cultivation difficulties and sequencing depth. Here, we construct 31 draft genomes of nitrite-oxidizing bacteria from global OMZs. The distribution of nitrite oxidation rates, abundance and expression of nitrite oxidoreductase genes, and relative abundance of nitrite-oxidizing bacterial draft genomes from the same samples all show peaks in the core of the oxygen-depleted zone (ODZ) and are all highly correlated in depth profiles within the major ocean oxygen minimum zones. The ODZ nitrite oxidizers are not found in the Tara Oceans global dataset (the most complete oxic ocean dataset), and the major nitrite oxidizers found in the oxygenated ocean do not occur in ODZ waters. A pangenomic analysis shows the ODZ nitrite oxidizers have distinct gene clusters compared to oxic nitrite oxidizers and are microaerophilic. These findings all indicate the existence of nitrite oxidizers whose niche is oxygen-deficient seawater. Thus, specialist nitrite-oxidizing bacteria are responsible for fixed nitrogen retention in marine oxygen minimum zones, with implications for control of the ocean’s fixed nitrogen inventory.more » « less
-
Abstract In oxygen (O2)‐controlled cell culture, an indispensable tool in biological research, it is presumed that the incubator setpoint equals the O2tension experienced by cells (i.e., pericellular O2). However, it is discovered that physioxic (5% O2) and hypoxic (1% O2) setpoints regularly induce anoxic (0% O2) pericellular tensions in both adherent and suspension cell cultures. Electron transport chain inhibition ablates this effect, indicating that cellular O2consumption is the driving factor. RNA‐seq analysis revealed that primary human hepatocytes cultured in physioxia experience ischemia‐reperfusion injury due to cellular O2consumption. A reaction‐diffusion model is developed to predict pericellular O2tension a priori, demonstrating that the effect of cellular O2consumption has the greatest impact in smaller volume culture vessels. By controlling pericellular O2tension in cell culture, it is found that hypoxia vs. anoxia induce distinct breast cancer transcriptomic and translational responses, including modulation of the hypoxia‐inducible factor (HIF) pathway and metabolic reprogramming. Collectively, these findings indicate that breast cancer cells respond non‐monotonically to low O2, suggesting that anoxic cell culture is not suitable for modeling hypoxia. Furthermore, it is shown that controlling atmospheric O2tension in cell culture incubators is insufficient to regulate O2in cell culture, thus introducing the concept of pericellular O2‐controlled cell culture.more » « less
An official website of the United States government

