skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generator based approach to analyze mutations in genomic datasets
Abstract In contrast to the conventional approach of directly comparing genomic sequences using sequence alignment tools, we propose a computational approach that performs comparisons between sequence generators. These sequence generators are learned via a data-driven approach that empirically computes the state machine generating the genomic sequence of interest. As the state machine based generator of the sequence is independent of the sequence length, it provides us with an efficient method to compute the statistical distance between large sets of genomic sequences. Moreover, our technique provides a fast and efficient method to cluster large datasets of genomic sequences, characterize their temporal and spatial evolution in a continuous manner, get insights into the locality sensitive information about the sequences without any need for alignment. Furthermore, we show that the technique can be used to detect local regions with mutation activity, which can then be applied to aid alignment techniques for the fast discovery of mutations. To demonstrate the efficacy of our technique on real genomic data, we cluster different strains of SARS-CoV-2 viral sequences, characterize their evolution and identify regions of the viral sequence with mutations.  more » « less
Award ID(s):
1932620 1936775
PAR ID:
10302295
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Accurate multiple sequence alignment is challenging on many data sets, including those that are large, evolve under high rates of evolution, or have sequence length heterogeneity. While substantial progress has been made over the last decade in addressing the first two challenges, sequence length heterogeneity remains a significant issue for many data sets. Sequence length heterogeneity occurs for biological and technological reasons, including large insertions or deletions (indels) that occurred in the evolutionary history relating the sequences, or the inclusion of sequences that are not fully assembled. Ultra-large alignments using Phylogeny-Aware Profiles (UPP) (Nguyen et al. 2015) is one of the most accurate approaches for aligning data sets that exhibit sequence length heterogeneity: it constructs an alignment on the subset of sequences it considers ‘‘full-length,’’ represents this ‘‘backbone alignment’’ using an ensemble of hidden Markov models (HMMs), and then adds each remaining sequence into the backbone alignment based on an HMM selected for that sequence from the ensemble. Our new method, WeIghTed Consensus Hmm alignment (WITCH), improves on UPP in three important ways: first, it uses a statistically principled technique to weight and rank the HMMs; second, it uses k > 1 HMMs from the ensemble rather than a single HMM; and third, it combines the alignments for each of the selected HMMs using a consensus algorithm that takes the weights into account. We show that this approach provides improved alignment accuracy compared with UPP and other leading alignment methods, as well as improved accuracy for maximum likelihood trees based on these alignments. 
    more » « less
  2. Robinson, Peter (Ed.)
    Abstract Motivation In molecular epidemiology, the identification of clusters of transmissions typically requires the alignment of viral genomic sequence data. However, existing methods of multiple sequence alignment (MSA) scale poorly with respect to the number of sequences. Results ViralMSA is a user-friendly reference-guided MSA tool that leverages the algorithmic techniques of read mappers to enable the MSA of ultra-large viral genome datasets. It scales linearly with the number of sequences, and it is able to align tens of thousands of full viral genomes in seconds. However, alignments produced by ViralMSA omit insertions with respect to the reference genome. Availability and implementation ViralMSA is freely available at https://github.com/niemasd/ViralMSA as an open-source software project. Contact niema@ucsd.edu Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  3. Abstract MotivationMultiple sequence alignment (MSA) is a basic step in many bioinformatics pipelines. However, achieving highly accurate alignments on large datasets, especially those with sequence length heterogeneity, is a challenging task. Ultra-large multiple sequence alignment using Phylogeny-aware Profiles (UPP) is a method for MSA estimation that builds an ensemble of Hidden Markov Models (eHMM) to represent an estimated alignment on the full-length sequences in the input, and then adds the remaining sequences into the alignment using selected HMMs in the ensemble. Although UPP provides good accuracy, it is computationally intensive on large datasets. ResultsWe present UPP2, a direct improvement on UPP. The main advance is a fast technique for selecting HMMs in the ensemble that allows us to achieve the same accuracy as UPP but with greatly reduced runtime. We show that UPP2 produces more accurate alignments compared to leading MSA methods on datasets exhibiting substantial sequence length heterogeneity and is among the most accurate otherwise. Availability and implementationhttps://github.com/gillichu/sepp. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  4. Mutations play a significant role in evolution since they lead to genomic diversity. Among different types of mutations, duplication is thought to be one of the most important. Motivated by the theory of evolution by duplication, we consider a stochastic model for the evolution of sequences under noisy tandem duplication, where segments of the sequences are replicated and approximate copies are added to the sequence. Our goal is to study the statistical properties of the sequence after a given number of mutations. To do so, we study the k-mer frequencies of the evolving sequence. We first bound the expected frequencies of different k-mers after n mutations and relate the convergence rate of the expected trajectories to the parameters of the model (probabilities of different mutations). Then we extend our analysis to second moments of the k-mer trajectories, which allow us to better characterize their evolution. Finally, we will demonstrate the application of the proposed methods to bounding waiting times, the first such results for complex mutation systems. 
    more » « less
  5. Abstract MotivationDespite advances in method development for multiple sequence alignment over the last several decades, the alignment of datasets exhibiting substantial sequence length heterogeneity, especially when the input sequences include very short sequences (either as a result of sequencing technologies or of large deletions during evolution) remains an inadequately solved problem. ResultsWe present HMMerge, a method to compute an alignment of datasets exhibiting high sequence length heterogeneity, or to add short sequences into a given ‘backbone’ alignment. HMMerge builds on the technique from its predecessor alignment methods, UPP and WITCH, which build an ensemble of profile HMMs to represent the backbone alignment and add the remaining sequences into the backbone alignment using the ensemble. HMMerge differs from UPP and WITCH by building a new ‘merged’ HMM from the ensemble, and then using that merged HMM to align the query sequences. We show that HMMerge is competitive with WITCH, with an advantage over WITCH when adding very short sequences into backbone alignments. Availability and implementationHMMerge is freely available at https://github.com/MinhyukPark/HMMerge. Supplementary informationSupplementary data are available at Bioinformatics Advances online. 
    more » « less