Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Recent technological advances have contributed to the rapid increase in algorithmic complexity of applications, ranging from signal processing to autonomous systems. To control this complexity and endow heterogeneous computing systems with autonomous programming and optimization capabilities, we propose aunified, end-to-end, programmable graph representation learning(PGL) framework that mines the complexity of high-level programs down to low-level virtual machine intermediate representation, extracts specific computational patterns, and predicts which code segments run best on a core in heterogeneous hardware. PGL extracts multifractal features from code graphs and exploits graph representation learning strategies for automatic parallelization and correct assignment to heterogeneous processors. The comprehensive evaluation of PGL on existing and emerging complex software demonstrates a 6.42x and 2.02x speedup compared to thread-based execution and state-of-the-art techniques, respectively. Our PGL framework leads to higher processing efficiency, which is crucial for future AI and high-performance computing applications such as autonomous vehicles and machine vision.more » « less
-
Abstract Phase transitions are typically quantified using order parameters, such as crystal lattice distances and radial distribution functions, which can identify subtle changes in crystalline materials or high‐contrast phases with large structural differences. However, the identification of phases with high complexity, multiscale organization and of complex patterns during the structural fluctuations preceding phase transitions, which are essential for understanding the system pathways between phases, is challenging for those traditional analyses. Here, it is shown that for two model systems— thermotropic liquid crystals and a lyotropic water/surfactant mixtures—graph theoretical (GT) descriptors can successfully identify complex phases combining molecular and nanoscale levels of organization that are hard to characterize with traditional methodologies. Furthermore, the GT descriptors also reveal the pathways between the different phases. Specifically, centrality parameters and node‐based fractal dimension quantify the system behavior preceding the transitions, capturing fluctuation‐induced breakup of aggregates and their long‐range cooperative interactions. GT parameterization can be generalized for a wide range of chemical systems and be instrumental for the growth mechanisms of complex nanostructures.more » « less
-
Abstract Deciphering the non-trivial interactions and mechanisms driving the evolution of time-varying complex networks (TVCNs) plays a crucial role in designing optimal control strategies for such networks or enhancing their causal predictive capabilities. In this paper, we advance the science of TVCNs by providing a mathematical framework through which we can gauge how local changes within a complex weighted network affect its global properties. More precisely, we focus on unraveling unknown geometric properties of a network and determine its implications on detecting phase transitions within the dynamics of a TVCN. In this vein, we aim at elaborating a novel and unified approach that can be used to depict the relationship between local interactions in a complex network and its global kinetics. We propose a geometric-inspired framework to characterize the network’s state and detect a phase transition between different states, to infer the TVCN’s dynamics. A phase of a TVCN is determined by its Forman–Ricci curvature property. Numerical experiments show the usefulness of the proposed curvature formalism to detect the transition between phases within artificially generated networks. Furthermore, we demonstrate the effectiveness of the proposed framework in identifying the phase transition phenomena governing the training and learning processes of artificial neural networks. Moreover, we exploit this approach to investigate the phase transition phenomena in cellular re-programming by interpreting the dynamics of Hi-C matrices as TVCNs and observing singularity trends in the curvature network entropy. Finally, we demonstrate that this curvature formalism can detect a political change. Specifically, our framework can be applied to the US Senate data to detect a political change in the United States of America after the 1994 election, as discussed by political scientists.more » « less
-
Abstract Controlling large-scale dynamical networks is crucial to understand and, ultimately, craft the evolution of complex behavior. While broadly speaking we understand how to control Markov dynamical networks, where the current state is only a function of its previous state, we lack a general understanding of how to control dynamical networks whose current state depends on states in the distant past (i.e. long-term memory). Therefore, we require a different way to analyze and control the more prevalent long-term memory dynamical networks. Herein, we propose a new approach to control dynamical networks exhibiting long-term power-law memory dependencies. Our newly proposed method enables us to find the minimum number of driven nodes (i.e. the state vertices in the network that are connected to one and only one input) and their placement to control a long-term power-law memory dynamical network given a specific time-horizon, which we define as the ‘time-to-control’. Remarkably, we provide evidence that long-term power-law memory dynamical networks require considerably fewer driven nodes to steer the network’s state to a desired goal for any given time-to-control as compared with Markov dynamical networks. Finally, our method can be used as a tool to determine the existence of long-term memory dynamics in networks.more » « less
-
Abstract Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death worldwide. Current COPD diagnosis (i.e., spirometry) could be unreliable because the test depends on an adequate effort from the tester and testee. Moreover, the early diagnosis of COPD is challenging. The authors address COPD detection by constructing two novel physiological signals datasets (4432 records from 54 patients in the WestRo COPD dataset and 13824 medical records from 534 patients in the WestRo Porti COPD dataset). The authors demonstrate their complex coupled fractal dynamical characteristics and perform a fractional‐order dynamics deep learning analysis to diagnose COPD. The authors found that the fractional‐order dynamical modeling can extract distinguishing signatures from the physiological signals across patients with all COPD stages—from stage 0 (healthy) to stage 4 (very severe). They use the fractional signatures to develop and train a deep neural network that predicts COPD stages based on the input features (such as thorax breathing effort, respiratory rate, or oxygen saturation). The authors show that the fractional dynamic deep learning model (FDDLM) achieves a COPD prediction accuracy of 98.66% and can serve as a robust alternative to spirometry. The FDDLM also has high accuracy when validated on a dataset with different physiological signals.more » « less
-
Abstract Cellular biological networks represent the molecular interactions that shape function of living cells. Uncovering the organization of a biological network requires efficient and accurate algorithms to determine the components, termed communities, underlying specific processes. Detecting functional communities is challenging because reconstructed biological networks are always incomplete due to technical bias and biological complexity, and the evaluation of putative communities is further complicated by a lack of known ground truth. To address these challenges, we developed a geometric-based detection framework based on Ollivier-Ricci curvature to exploit information about network topology to perform community detection from partially observed biological networks. We further improved this approach by integrating knowledge of gene function, termed side information, into the Ollivier-Ricci curvature algorithm to aid in community detection. This approach identified essential conserved and varied biological communities from partially observedArabidopsisprotein interaction datasets better than the previously used methods. We show that Ollivier-Ricci curvature with side information identified an expanded auxin community to include an important protein stability complex, the Cop9 signalosome, consistent with previous reported links to auxin response and root development. The results show that community detection based on Ollivier-Ricci curvature with side information can uncover novel components and novel communities in biological networks, providing novel insight into the organization and function of complex networks.more » « less
-
Abstract Gels self‐assembled from colloidal nanoparticles (NPs) translate the size‐dependent properties of nanostructures to materials with macroscale volumes. Large spanning networks of NP chains provide high interconnectivity within the material necessary for a wide range of properties from conductivity to viscoelasticity. However, a great challenge for nanoscale engineering of such gels lies in being able to accurately and quantitatively describe their complex non‐crystalline structure that combines order and disorder. The quantitative relationships between the mesoscale structural and material properties of nanostructured gels are currently unknown. Here, it is shown that lead telluride NPs spontaneously self‐assemble into a spanning network hydrogel. By applying graph theory (GT), a method for quantifying the complex structure of the NP gels is established using a topological descriptor of average nodal connectivity that is found to correlate with the gel's mechanical and charge transport properties. GT descriptions make possible the design of non‐crystalline porous materials from a variety of nanoscale components for photonics, catalysis, adsorption, and thermoelectrics.more » « less
-
This study investigated the generalizability of Arabidopsis thaliana immune responses across diverse pathogens, including Botrytis cinerea, Sclerotinia sclerotiorum, and Pseudomonas syringae, using a data-driven, machine learning approach. Machine learning models were trained to predict disease development from early transcriptional responses. Feature selection techniques based on network science and topology were used to train models employing only a fraction of the transcriptome. Machine learning models trained on one pathosystem where then validated by predicting disease development in new pathosystems. The identified feature selection gene sets were enriched for pathways related to biotic, abiotic, and stress responses, though the specific genes involved differed between feature sets. This suggests common immune responses to diverse pathogens that operate via different gene sets.The study demonstrates that machine learning can uncover both established and novel components of the plant's immune response, offering insights into disease resistance mechanisms. These predictive models highlight the potential to advance our understanding of multigenic outcomes in plant immunity and can be further refined for applications in disease prediction.more » « less
-
Computation graphs are Directed Acyclic Graphs (DAGs) where the nodes correspond to mathematical operations and are used widely as abstractions in optimizations of neural networks. The device placement problem aims to identify optimal allocations of those nodes to a set of (potentially heterogeneous) devices. Existing approaches rely on two types of architectures known as grouper-placer and encoder-placer, respectively. In this work, we bridge the gap between encoder-placer and grouper-placer techniques and propose a novel framework for the task of device placement, relying on smaller computation graphs extracted from the OpenVINO toolkit. The framework consists of five steps, including graph coarsening, node representation learning and policy optimization. It facilitates end-to-end training and takes into account the DAG nature of the computation graphs. We also propose a model variant, inspired by graph parsing networks and complex network analysis, enabling graph representation learning and jointed, personalized graph partitioning, using an unspecified number of groups. To train the entire framework, we use reinforcement learning using the execution time of the placement as a reward. We demonstrate the flexibility and effectiveness of our approach through multiple experiments with three benchmark models, namely Inception-V3, ResNet, and BERT. The robustness of the proposed framework is also highlighted through an ablation study. The suggested placements improve the inference speed for the benchmark models by up to over CPU execution and by up to compared to other commonly used baselines.more » « less
-
Apprenticeship learning crucially depends on effectively learning rewards, and hence control policies from user demonstrations. Of particular difficulty is the setting where the desired task consists of a number of sub-goals with temporal dependencies. The quality of inferred rewards and hence policies are typically limited by the quality of demonstrations, and poor inference of these can lead to undesirable outcomes. In this paper, we show how temporal logic specifications that describe high level task objectives, are encoded in a graph to define a temporal-based metric that reasons about behaviors of demonstrators and the learner agent to improve the quality of inferred rewards and policies. Through experiments on a diverse set of robot manipulator simulations, we show how our framework overcomes the drawbacks of prior literature by drastically improving the number of demonstrations required to learn a control policy.more » « less
An official website of the United States government

Full Text Available