skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unified model of short- and long-term HIV viral rebound for clinical trial planning
Antiretroviral therapy (ART) effectively controls HIV infection, suppressing HIV viral loads. Typically suspension of therapy is rapidly followed by rebound of viral loads to high, pre-therapy levels. Indeed, a recent study showed that approximately 90% of treatment interruption study participants show viral rebound within at most a few months of therapy suspension, but the remaining 10%, showed viral rebound some months, or years, after ART suspension. Some may even never rebound. We investigate and compare branching process models aimed at gaining insight into these viral dynamics. Specifically, we provide a theory that explains both short- and long-term viral rebounds, and post-treatment control, via a multitype branching process with time-inhomogeneous rates, validated with data from Li et al. (Li et al. 2016 AIDS 30 , 343–353. ( doi:10.1097/QAD.0000000000000953 )). We discuss the associated biological interpretation and implications of our best-fit model. To test the effectiveness of an experimental intervention in delaying or preventing rebound, the standard practice is to suspend therapy and monitor the study participants for rebound. We close with a discussion of an important application of our modelling in the design of such clinical trials.  more » « less
Award ID(s):
1714654
PAR ID:
10302317
Author(s) / Creator(s):
 ;  ;  ;  
Date Published:
Journal Name:
Journal of The Royal Society Interface
Volume:
18
Issue:
177
ISSN:
1742-5662
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Drug-resistant HIV-1 has caused a growing concern in clinic and public health. Although combination antiretroviral therapy can contribute massively to the suppression of viral loads in patients with HIV-1, it cannot lead to viral eradication. Continuing viral replication during sub-optimal therapy (due to poor adherence or other reasons) may lead to the accumulation of drug resistance mutations, resulting in an increased risk of disease progression. Many studies also suggest that events occurring during the early stage of HIV-1 infection (i.e., the first few hours to days following HIV exposure) may determine whether the infection can be successfully established. However, the numbers of infected cells and viruses during the early stage are extremely low and stochasticity may play a critical role in dictating the fate of infection. In this paper, we use stochastic models to investigate viral infection and the emergence of drug resistance of HIV-1. The stochastic model is formulated by a continuous-time Markov chain (CTMC), which is derived based on an ordinary differential equation model proposed by Kitayimbwa et al. that includes both forward and backward mutations. An analytic estimate of the probability of the clearance of HIV infection of the CTMC model near the infection-free equilibrium is obtained by a multitype branching process approximation. The analytical predictions are validated by numerical simulations. Unlike the deterministic dynamics where the basic reproduction number $$ \mathcal{R}_0 $$ serves as a sharp threshold parameter (i.e., the disease dies out if $$ \mathcal{R}_0 < 1 $$ and persists if $$ \mathcal{R}_0 > 1 $$), the stochastic models indicate that there is always a positive probability for HIV infection to be eradicated in patients. In the presence of antiretroviral therapy, our results show that the chance of clearance of the infection tends to increase although drug resistance is likely to emerge. 
    more » « less
  2. Abstract The HIV reservoir consists of infected cells in which the HIV-1 genome persists as provirus despite effective antiretroviral therapy (ART). Studies exploring HIV cure therapies often measure intact proviral DNA levels, time to rebound after ART interruption, or ex vivo stimulation assays of latently infected cells. This study utilizes barcoded HIV to analyze the reservoir in humanized mice. Using bulk PCR and deep sequencing methodologies, we retrieve 890 viral RNA barcodes and 504 proviral barcodes linked to 15,305 integration sites at the single RNA or DNA molecule in vivo. We track viral genetic diversity throughout early infection, ART, and rebound. The proviral reservoir retains genetic diversity despite cellular clonal proliferation and viral seeding by rebounding virus. Non-proliferated cell clones are likely the result of elimination of proviruses associated with transcriptional activation and viremia. Elimination of proviruses associated with viremia is less prominent among proliferated cell clones. Proliferated, but not massively expanded, cell clones contribute to proviral expansion and viremia, suggesting they fuel viral persistence. This approach enables comprehensive assessment of viral levels, lineages, integration sites, clonal proliferation and proviral epigenetic patterns in vivo. These findings highlight complex reservoir dynamics and the role of proliferated cell clones in viral persistence. 
    more » « less
  3. Infusion of broadly neutralizing antibodies (bNAbs) has shown promise as an alternative to anti-retroviral therapy against HIV. A key challenge is to suppress viral escape, which is more effectively achieved with a combination of bNAbs. Here, we propose a computational approach to predict the efficacy of a bNAb therapy based on the population genetics of HIV escape, which we parametrize using high-throughput HIV sequence data from bNAb-naive patients. By quantifying the mutational target size and the fitness cost of HIV-1 escape from bNAbs, we predict the distribution of rebound times in three clinical trials. We show that a cocktail of three bNAbs is necessary to effectively suppress viral escape, and predict the optimal composition of such bNAb cocktail. Our results offer a rational therapy design for HIV, and show how genetic data can be used to predict treatment outcomes and design new approaches to pathogenic control. 
    more » « less
  4. Abstract Although combination antiretroviral therapy (ART) with three or more drugs is highly effective in suppressing viral load for people with HIV (human immunodeficiency virus), many ART agents may exacerbate mental health‐related adverse effects including depression. Therefore, understanding the effects of combination ART on mental health can help clinicians personalize medicine with less adverse effects to avoid undesirable health outcomes. The emergence of electronic health records offers researchers' unprecedented access to HIV data including individuals' mental health records, drug prescriptions, and clinical information over time. However, modeling such data is challenging due to high dimensionality of the drug combination space, the individual heterogeneity, and sparseness of the observed drug combinations. To address these challenges, we develop a Bayesian nonparametric approach to learn drug combination effect on mental health in people with HIV adjusting for sociodemographic, behavioral, and clinical factors. The proposed method is built upon the subset‐tree kernel that represents drug combinations in a way that synthesizes known regimen structure into a single mathematical representation. It also utilizes a distance‐dependent Chinese restaurant process to cluster heterogeneous populations while considering individuals' treatment histories. We evaluate the proposed approach through simulation studies, and apply the method to a dataset from the Women's Interagency HIV Study, showing the clinical utility of our model in guiding clinicians to prescribe informed and effective personalized treatment based on individuals' treatment histories and clinical characteristics. 
    more » « less
  5. Summary Combination antiretroviral therapy (ART) with at least three different drugs has become the standard of care for people with HIV (PWH) due to its exceptional effectiveness in viral suppression. However, many ART drugs have been reported to associate with neuropsychiatric adverse effects including depression, especially when certain genetic polymorphisms exist. Pharmacogenetics is an important consideration for administering combination ART as it may influence drug efficacy and increase risk for neuropsychiatric conditions. Large-scale longitudinal HIV databases provide researchers opportunities to investigate the pharmacogenetics of combination ART in a data-driven manner. However, with more than 30 FDA-approved ART drugs, the interplay between the large number of possible ART drug combinations and genetic polymorphisms imposes statistical modeling challenges. We develop a Bayesian approach to examine the longitudinal effects of combination ART and their interactions with genetic polymorphisms on depressive symptoms in PWH. The proposed method utilizes a Gaussian process with a composite kernel function to capture the longitudinal combination ART effects by directly incorporating individuals’ treatment histories, and a Bayesian classification and regression tree to account for individual heterogeneity. Through both simulation studies and an application to a dataset from the Women’s Interagency HIV Study, we demonstrate the clinical utility of the proposed approach in investigating the pharmacogenetics of combination ART and assisting physicians to make effective individualized treatment decisions that can improve health outcomes for PWH. 
    more » « less