skip to main content


Title: A qualitative study of cleaning in Jupyter notebooks
Data scientists commonly use computational notebooks because they provide a good environment for testing multiple models. However, once the scientist completes the code and finds the ideal model, the data scientist will have to dedicate time to clean up the code in order for others to understand it. In this paper, we perform a qualitative study on how scientists clean their code in hopes of being able to suggest a tool to automate this process. Our end goal is for tool builders to address possible gaps and provide additional aid to data scientists, who can then focus more on their actual work rather than the routine and tedious cleaning duties.  more » « less
Award ID(s):
1813598
NSF-PAR ID:
10302343
Author(s) / Creator(s):
 
Date Published:
Journal Name:
ESEC/FSE 2021: Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering
Page Range / eLocation ID:
1663 to 1665
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors: rkhalaf@us.ibm.com, rosen@il.ibm.com, gustavo@us.ibm.com, mahtabm@au1.ibm.com, sharrer@au.ibm.com ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert data scientists, deeply knowledgeable in at least one other scientific domain, and competent software engineers with access to large compute resources. People who match this description are few and far between, unfortunately leading to a shrinking pool of possible participants and a loss of experts dedicating their time to solving important problems. Participation is even further restricted in the context of any challenge run on confidential use cases or with sensitive data. Recently, we designed and ran a deep learning challenge to crowd-source the development of an automated labelling system for brain recordings, aiming to advance epilepsy research. A focus of this challenge, run internally in IBM, was the development of a platform that lowers the barrier of entry and therefore mitigates the risk of excluding interested parties from participating. The challenge: enabling wide participation With the goal to run a challenge that mobilises the largest possible pool of participants from IBM (global), we designed a use case around previous work in epileptic seizure prediction [3]. In this “Deep Learning Epilepsy Detection Challenge”, participants were asked to develop an automatic labelling system to reduce the time a clinician would need to diagnose patients with epilepsy. Labelled training and blind validation data for the challenge were generously provided by Temple University Hospital (TUH) [4]. TUH also devised a novel scoring metric for the detection of seizures that was used as basis for algorithm evaluation [5]. In order to provide an experience with a low barrier of entry, we designed a generalisable challenge platform under the following principles: 1. No participant should need to have in-depth knowledge of the specific domain. (i.e. no participant should need to be a neuroscientist or epileptologist.) 2. No participant should need to be an expert data scientist. 3. No participant should need more than basic programming knowledge. (i.e. no participant should need to learn how to process fringe data formats and stream data efficiently.) 4. No participant should need to provide their own computing resources. In addition to the above, our platform should further • guide participants through the entire process from sign-up to model submission, • facilitate collaboration, and • provide instant feedback to the participants through data visualisation and intermediate online leaderboards. The platform The architecture of the platform that was designed and developed is shown in Figure 1. The entire system consists of a number of interacting components. (1) A web portal serves as the entry point to challenge participation, providing challenge information, such as timelines and challenge rules, and scientific background. The portal also facilitated the formation of teams and provided participants with an intermediate leaderboard of submitted results and a final leaderboard at the end of the challenge. (2) IBM Watson Studio [6] is the umbrella term for a number of services offered by IBM. Upon creation of a user account through the web portal, an IBM Watson Studio account was automatically created for each participant that allowed users access to IBM's Data Science Experience (DSX), the analytics engine Watson Machine Learning (WML), and IBM's Cloud Object Storage (COS) [7], all of which will be described in more detail in further sections. (3) The user interface and starter kit were hosted on IBM's Data Science Experience platform (DSX) and formed the main component for designing and testing models during the challenge. DSX allows for real-time collaboration on shared notebooks between team members. A starter kit in the form of a Python notebook, supporting the popular deep learning libraries TensorFLow [8] and PyTorch [9], was provided to all teams to guide them through the challenge process. Upon instantiation, the starter kit loaded necessary python libraries and custom functions for the invisible integration with COS and WML. In dedicated spots in the notebook, participants could write custom pre-processing code, machine learning models, and post-processing algorithms. The starter kit provided instant feedback about participants' custom routines through data visualisations. Using the notebook only, teams were able to run the code on WML, making use of a compute cluster of IBM's resources. The starter kit also enabled submission of the final code to a data storage to which only the challenge team had access. (4) Watson Machine Learning provided access to shared compute resources (GPUs). Code was bundled up automatically in the starter kit and deployed to and run on WML. WML in turn had access to shared storage from which it requested recorded data and to which it stored the participant's code and trained models. (5) IBM's Cloud Object Storage held the data for this challenge. Using the starter kit, participants could investigate their results as well as data samples in order to better design custom algorithms. (6) Utility Functions were loaded into the starter kit at instantiation. This set of functions included code to pre-process data into a more common format, to optimise streaming through the use of the NutsFlow and NutsML libraries [10], and to provide seamless access to the all IBM services used. Not captured in the diagram is the final code evaluation, which was conducted in an automated way as soon as code was submitted though the starter kit, minimising the burden on the challenge organising team. Figure 1: High-level architecture of the challenge platform Measuring success The competitive phase of the "Deep Learning Epilepsy Detection Challenge" ran for 6 months. Twenty-five teams, with a total number of 87 scientists and software engineers from 14 global locations participated. All participants made use of the starter kit we provided and ran algorithms on IBM's infrastructure WML. Seven teams persisted until the end of the challenge and submitted final solutions. The best performing solutions reached seizure detection performances which allow to reduce hundred-fold the time eliptologists need to annotate continuous EEG recordings. Thus, we expect the developed algorithms to aid in the diagnosis of epilepsy by significantly shortening manual labelling time. Detailed results are currently in preparation for publication. Equally important to solving the scientific challenge, however, was to understand whether we managed to encourage participation from non-expert data scientists. Figure 2: Primary occupation as reported by challenge participants Out of the 40 participants for whom we have occupational information, 23 reported Data Science or AI as their main job description, 11 reported being a Software Engineer, and 2 people had expertise in Neuroscience. Figure 2 shows that participants had a variety of specialisations, including some that are in no way related to data science, software engineering, or neuroscience. No participant had deep knowledge and experience in data science, software engineering and neuroscience. Conclusion Given the growing complexity of data science problems and increasing dataset sizes, in order to solve these problems, it is imperative to enable collaboration between people with differences in expertise with a focus on inclusiveness and having a low barrier of entry. We designed, implemented, and tested a challenge platform to address exactly this. Using our platform, we ran a deep-learning challenge for epileptic seizure detection. 87 IBM employees from several business units including but not limited to IBM Research with a variety of skills, including sales and design, participated in this highly technical challenge. 
    more » « less
  2. This Innovative Practice Work in Progress presents a plugin tool named DroidPatrol. It can be integrated with the Android Studio to perform tainted data flow analysis of mobile applications. Most vulnerabilities should be addressed and fixed during the development phase. Computer users, managers, and developers agree that we need software and systems that are “more secure”. Such efforts require support from both the educational institutions and learning communities to improve software assurance, particularly in writing secure code. Many open source static analysis tools help developers to maintain and clean up the code. However, they are not able to find potential security bugs. Our work is aimed to checking of security issues within Android applications during implementation. We provide an example hands-on lab based on DroidPatrol prototype and share the initial evaluation feedback from a classroom. The initial results show that the plugin based hands-on lab generates interests among learners and has the promise of acting as an intervention tool for secure software development. 
    more » « less
  3. This Innovative Practice Work in Progress presents a plugin tool named DroidPatrol. It can be integrated with the Android Studio to perform tainted data flow analysis of mobile applications. Most vulnerabilities should be addressed and fixed during the development phase. Computer users, managers, and developers agree that we need software and systems that are “more secure”. Such efforts require support from both the educational institutions and learning communities to improve software assurance, particularly in writing secure code. Many open source static analysis tools help developers to maintain and clean up the code. However, they are not able to find potential security bugs. Our work is aimed to checking of security issues within Android applications during implementation. We provide an example hands-on lab based on DroidPatrol prototype and share the initial evaluation feedback from a classroom. The initial results show that the plugin based hands-on lab generates interests among learners and has the promise of acting as an intervention tool for secure software development. 
    more » « less
  4. This Innovative Practice Work in Progress presents a plugin tool named DroidPatrol. It can be integrated with the Android Studio to perform tainted data flow analysis of mobile applications. Most vulnerabilities should be addressed and fixed during the development phase. Computer users, managers, and developers agree that we need software and systems that are “more secure”. Such efforts require support from both the educational institutions and learning communities to improve software assurance, particularly in writing secure code. Many open source static analysis tools help developers to maintain and clean up the code. However, they are not able to find potential security bugs. Our work is aimed to checking of security issues within Android applications during implementation. We provide an example hands-on lab based on DroidPatrol prototype and share the initial evaluation feedback from a classroom. The initial results show that the plugin based hands-on lab generates interests among learners and has the promise of acting as an intervention tool for secure software development. 
    more » « less
  5. Abouzied, Azza ; Amer-Yahia, Sihem ; Ives, Zachary (Ed.)
    Data scientists frequently transform data from one form to another while cleaning, integrating, and enriching datasets.Writing such transformations, or “mapping functions" is time-consuming and often involves significant code re-use. Unfortunately, when every dataset is slightly different from the last, finding the right mapping functions to re-use can be equally difficult. In this paper, we propose “Link Once and Keep It" (Loki), a system which consists of a repository of datasets and mapping functions and relates new datasets to datasets it already knows about, helping a data scientist to quickly locate and re-use mapping functions she developed for other datasets in the past. Loki represents a first step towards building and re-using repositories of domain-specific data integration pipelines. 
    more » « less