Abstract We present the first results of the holographic beam-mapping program for the Canadian Hydrogen Intensity Mapping Experiment (CHIME). We describe the implementation of a holographic technique as adapted for CHIME, and introduce the processing pipeline which prepares the raw holographic timestreams for analysis of beam features. We use data from six bright sources across the full 400–800 MHz observing band of CHIME to provide measurements of the copolar and cross-polar beam response in both amplitude and phase for all 1024 dual-polarized feeds in the array. In addition, we present comparisons with independent probes of the CHIME beam, which indicate the presence of polarized beam leakage. Holographic measurements of the beam have already been applied in science with CHIME, e.g., in estimating the detection significance of far-sidelobe fast radio bursts, and in validating the beam models used for CHIME’s first detections of 21 cm emission (in cross-correlation with measurements of large-scale structure from galaxy surveys and the Lyαforest). Measurements presented in this paper, and future holographic results, will provide a unique data set to characterize the CHIME beam and improve the experiment’s prospects for a detection of the baryon acoustic oscillation signal.
more »
« less
Unfiltered holography: optimizing high diffraction orders without optical filtering for compact holographic displays
Computer-generated holography suffers from high diffraction orders (HDOs) created from pixelated spatial light modulators, which must be optically filtered using bulky optics. Here, we develop an algorithmic framework for optimizing HDOs without optical filtering to enable compact holographic displays. We devise a wave propagation model of HDOs and use it to optimize phase patterns, which allows HDOs to contribute to forming the image instead of creating artifacts. The proposed method significantly outperforms previous algorithms in an unfiltered holographic display prototype.
more »
« less
- Award ID(s):
- 1839974
- PAR ID:
- 10302396
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 46
- Issue:
- 23
- ISSN:
- 0146-9592; OPLEDP
- Page Range / eLocation ID:
- Article No. 5822
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A bstract The holographic entropy cone characterizes the relations between entanglement entropies for a spatial partitioning of the boundary spacetime of a holographic CFT in any state describing a classical bulk geometry. We argue that the holographic entropy cone, for an arbitrary number of parties, can be reconstructed from more fundamental data determined solely by subadditivity of quantum entropy. We formulate certain conjectures about graph models of holographic entanglement, for which we provide strong evidence, and rigorously prove that they all imply that such a reconstruction is possible. Our conjectures (except only for the weakest) further imply that the necessary data is remarkably simple. In essence, all one needs to know to reconstruct the holographic entropy cone, is a certain subset of the extreme rays of this simpler “subadditivity cone”, namely those which can be realized in holography. This recasting of the bewildering entanglement structure of geometric states into primal building blocks paves the way to distilling the essence of holography for the emergence of a classical bulk spacetime.more » « less
-
Holographic particle characterization uses in-line holographic microscopy and the Lorenz-Mie theory of light scattering to measure the diameter and the refractive index of individual colloidal particles in their native dispersions. This wealth of information has proved invaluable in fields as diverse as soft-matter physics, biopharmaceuticals, wastewater management, and food science but so far has been available only for dispersions in transparent media. Here, we demonstrate that holographic characterization can yield precise and accurate results even when the particles of interest are dispersed in turbid media. By elucidating how multiple light scattering contributes to image formation in holographic microscopy, we establish the range conditions under which holographic characterization can reliably probe turbid samples. We validate the technique with measurements on model colloidal spheres dispersed in commercial nanoparticle slurries.more » « less
-
Abstract Mimicry is a biological camouflage phenomenon whereby an organism can change its shape and color to resemble another object. Herein, the idea of biological mimicry and rich degrees of freedom in metasurface designs are combined to realize holographic mimicry devices. A general mathematical method, called phase matrix transformation, to accomplish the holographic mimicry process is proposed. Based on this method, a dynamic metasurface hologram is designed, which shows an image of a “bird” in the air, and a distinct image of a “fish” when the environment is changed to oil. Furthermore, to make the mimicry behavior more generic, holographic mimicry operating at dual wavelengths is also designed and experimentally demonstrated. Moreover, the fully independent phase modulation realized by phase matrix transformation makes the working efficiency of the device relatively higher than the conventional multiwavelength holographic devices with off‐axis illumination or interleaved subarrays. The work potentially opens a new research paradigm interfacing bionics with nanophotonics, which may produce novel applications for optical information encryption, virtual/augmented reality (VR/AR), and military camouflage systems.more » « less
-
Conventional holographic tensor networks can be described as toy holographic maps constructed from many small linear maps acting in a spatially local way, all connected together with “background entanglement”, i.e. links of a fixed state, often the maximally entangled state. However, these constructions fall short of modeling real holographic maps. One reason is that their “areas” are trivial, taking the same value for all states, unlike in gravity where the geometry is dynamical. Recently, new constructions have ameliorated this issue by adding degrees of freedom that “live on the links”. This makes areas non-trivial, equal to the background entanglement piece plus a new positive piece that depends on the state of the link degrees of freedom. Nevertheless, this still has the downside that there is background entanglement, and hence it only models relatively limited code subspaces in which every area has a definite minimum value. In this note, we simply point out that a version of these constructions goes one step further: they can be background independent, with no background entanglement in the holographic map. This is advantageous because it allows tensor networks to model holographic maps for larger code subspaces. In addition to pointing this out, we address some subtleties involved in making it work.more » « less
An official website of the United States government
