Abstract Undirected C(sp3)−H functionalization reactions often follow site‐selectivity patterns that mirror the corresponding C−H bond dissociation energies (BDEs). This often results in the functionalization of weaker tertiary C−H bonds in the presence of stronger secondary and primary bonds. An important, contemporary challenge is the development of catalyst systems capable of selectively functionalizing stronger primary and secondary C−H bonds over tertiary and benzylic C−H sites. Herein, we report a Cu catalyst that exhibits a high degree of primary and secondary over tertiary C−H bond selectivity in the amidation of linear and cyclic hydrocarbons with aroyl azides ArC(O)N3. Mechanistic and DFT studies indicate that C−H amidation involves H‐atom abstraction from R‐H substrates by nitrene intermediates [Cu](κ2‐N,O‐NC(O)Ar) to provide carbon‐based radicals R.and copper(II)amide intermediates [CuII]‐NHC(O)Ar that subsequently capture radicals R.to form products R‐NHC(O)Ar. These studies reveal important catalyst features required to achieve primary and secondary C−H amidation selectivity in the absence of directing groups. 
                        more » 
                        « less   
                    
                            
                            Probing Redox Non‐Innocence in Iron–Carbene Complexes {Fe=C(H)Ar} 10–11 by 1,2 H and 13 C Pulse Electron Paramagnetic Resonance
                        
                    
    
            Abstract We report the synthesis and spectroscopic characterization of a series of iron‐carbene complexes in redox states {Fe=C(H)Ar}10–11. Pulse EPR studies of the1,2H and13C isotopologues of {Fe=C(H)Ar}11reveal the high covalency of the Fe–carbene bonding, leading to a more even spin distribution than commonly observed for reduced Fischer carbenes. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1905320
- PAR ID:
- 10302559
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 60
- Issue:
- 52
- ISSN:
- 1433-7851
- Format(s):
- Medium: X Size: p. 27220-27224
- Size(s):
- p. 27220-27224
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract α‐substituted ketones are important chemical targets as synthetic intermediates as well as functionalities in natural products and pharmaceuticals. We report the α‐acetylation of C(sp3)−H substrates R−H with arylmethyl ketones ArC(O)Me to provide α‐alkylated ketones ArC(O)CH2R at RT withtBuOOtBu as oxidant via copper(I) ‐diketiminato catalysts. Proceeding via alkyl radicals R•, this method enables α‐substitution with bulky substituents without competing elimination that occurs in more traditional alkylation reactions between enolates and alkyl electrophiles. DFT studies suggest the intermediacy of copper(II) enolates [CuII](CH2C(O)Ar) that capture alkyl radicals R• to give R−CH2C(O)Ar outcompeting dimerization of the copper(II) enolate to give the 1,4‐diketone ArC(O)CH2CH2C(O)Ar.more » « less
- 
            Abstract We report copper(II) and copper(III) trifluoromethyl complexes supported by a pyridinedicarboxamide ligand (L) as a platform for investigating the role of electron transfer in C(sp2)−H trifluoromethylation. While the copper(II) trifluoromethyl complex is unreactive towards (hetero)arenes, the formal copper(III) trifluoromethyl complex performs C(sp2)−H trifluoromethylation of a wide range of (hetero)arenes. Mechanistic studies using the copper(III) trifluoromethyl complex suggest that the mechanism of arene trifluoromethylation is substrate‐dependent. When the thermodynamic driving force for electron transfer is high, the reaction proceeds through a previously unidentified single electron transfer (SET) mechanism, where an initial electron transfer occurs between the substrate and oxidant prior to CF3group transfer. Otherwise, a CF3radical release/electrophilic aromatic substitution (SEAr) mechanism is followed. These studies provide valuable insights into the role of strong oxidants and potential mechanistic dichotomy in Cu‐mediated C(sp2)−H trifluoromethylation.more » « less
- 
            Abstract A Rh(II)/Au(I) catalyzed carbene cascade approach for the stereoselective synthesis of diverse spirocarbocycles is described. The cascade reaction involves a rhodium carbene initiatedsp2C−H functionalization followed by a gold catalyzed Conia‐ene cyclization. The cascade reaction accommodates a variety of aryl substituents as well as ring sizes and proceeds with high diastereoselectivity providing access to diverse spirocarbocycles. magnified imagemore » « less
- 
            Abstract Main‐group element‐mediated C−H activation remains experimentally challenging and the development of clear concepts and design principles has been limited by the increased reactivity of relevant complexes, especially for the heavier elements. Herein, we report that the stibenium ion [(pyCDC)Sb][NTf2]3(1) (pyCDC=bis‐pyridyl carbodicarbene; NTf2=bis(trifluoromethanesulfonyl)imide) reacts with acetonitrile in the presence of the base 2,6‐di‐tert‐butylpyridine to enable C(sp3)−H bond breaking to generate the stiba‐methylene nitrile complex [(pyCDC)Sb(CH2CN)][NTf2]2(2). Kinetic analyses were performed to elucidate the rate dependence for all the substrates involved in the reaction. Computational studies suggest that C−H activation proceeds via a mechanism in which acetonitrile first coordinates to the Sb center through the nitrogen atom in a κ1fashion, thereby weakening the C−H bond which can then be deprotonated by base in solution. Further, we show that1reacts with terminal alkynes in the presence of 2,6‐di‐tert‐butylpyridine to enable C(sp)−H bond breaking to form stiba‐alkynyl adducts of the type [(pyCDC)Sb(CCR)][NTf2]2(3 a–f). Compound1shows excellent specificity for the activation of the terminal C(sp)−H bond even across alkynes with diverse functionality. The resulting stiba‐methylene nitrile and stiba‐alkynyl adducts react with elemental iodine (I2) to produce iodoacetonitrile and iodoalkynes, while regenerating an Sb trication.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
