Abstract While the human body has many different examples of perfusable structures with complex geometries, biofabrication methods to replicate this complexity are still lacking. Specifically, the fabrication of self‐supporting, branched networks with multiple channel diameters is particularly challenging. Herein, the Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing (GUIDE‐3DP) approach for constructing perfusable networks of interconnected channels with precise control over branching geometries and vessel sizes is presented. To achieve user‐specified channel dimensions, this technique leverages the predictable diffusion of cross‐linking reaction‐initiators released from sacrificial inks printed within a hydrogel precursor. The versatility of GUIDE‐3DP to be adapted for use with diverse physicochemical cross‐linking mechanisms is demonstrated by designing seven printable material systems. Importantly, GUIDE‐3DP allows for the independent tunability of both the inner and outer diameters of the printed channels and the ability to fabricate seamless junctions at branch points. This 3D bioprinting platform is uniquely suited for fabricating lumenized structures with complex shapes characteristic of multiple hollow vessels throughout the body. As an exemplary application, the fabrication of vasculature‐like networks lined with endothelial cells is demonstrated. GUIDE‐3DP represents an important advance toward the fabrication of self‐supporting, physiologically relevant networks with intricate and perfusable geometries.
more »
« less
Reconfigurable Two‐Dimensional DNA Lattices: Static and Dynamic Angle Control
Abstract Branched DNA motifs serve as the basic construction elements for all synthetic DNA nanostructures. However, precise control of branching orientation remains a key challenge to further heighten the overall structural order. In this study, we use two strategies to control the branching orientation. The first one is based on immobile Holliday junctions which employ specific nucleotide sequences at the branch points which dictate their orientation. The second strategy is to use angle‐enforcing struts to fix the branching orientation with flexible spacers at the branch points. We have also demonstrated that the branching orientation control can be achieved dynamically, either by canonical Watson–Crick base pairing or non‐canonical nucleobase interactions (e.g., i‐motif and G‐quadruplex). With precise angle control and feedback from the chemical environment, these results will enable novel DNA nanomechanical sensing devices, and precisely‐ordered three‐dimensional architectures.
more »
« less
- PAR ID:
- 10302560
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 60
- Issue:
- 49
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 25781-25786
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We develop a new semi-algebraic proof system called Stabbing Planes which formalizes modern branch-and-cut algorithms for integer programming and is in the style of DPLL-based modern SAT solvers. As with DPLL there is only a single rule: the current polytope can be subdivided by branching on an inequality and its “integer negation.” That is, we can (non-deterministically choose) a hyperplane ax ≥ b with integer coefficients, which partitions the polytope into three pieces: the points in the polytope satisfying ax ≥ b, the points satisfying ax ≤ b, and the middle slab b − 1 < ax < b. Since the middle slab contains no integer points it can be safely discarded, and the algorithm proceeds recursively on the other two branches. Each path terminates when the current polytope is empty, which is polynomial-time checkable. Among our results, we show that Stabbing Planes can efficiently simulate the Cutting Planes proof system, and is equivalent to a tree-like variant of the R(CP) system of Krajicek [54]. As well, we show that it possesses short proofs of the canonical family of systems of F_2-linear equations known as the Tseitin formulas. Finally, we prove linear lower bounds on the rank of Stabbing Planes refutations by adapting lower bounds in communication complexity and use these bounds in order to show that Stabbing Planes proofs cannot be balanced.more » « less
-
Modern plant phenotyping requires tools that are robust to noise and missing data, while being able to efficiently process large numbers of plants. Here, we studied the skeletonization of plant architectures from 3D point clouds, which is critical for many downstream tasks, including analyses of plant shape, morphology, and branching angles. Specifically, we developed an algorithm to improve skeletonization at branch points (forks) by leveraging the geometric properties of cylinders around branch points. We tested this algorithm on a diverse set of high-resolution 3D point clouds of tomato and tobacco plants, grown in five environments and across multiple developmental timepoints. Compared to existing methods for 3D skeletonization, our method efficiently and more accurately estimated branching angles even in areas with noisy, missing, or non-uniformly sampled data. Our method is also applicable to inorganic datasets, such as scans of industrial pipes or urban scenes containing networks of complex cylindrical shapes.more » « less
-
Abstract Non‐canonical interactions in DNA remain under‐explored in DNA nanotechnology. Recently, many structures with non‐canonical motifs have been discovered, notably a hexagonal arrangement of typically rhombohedral DNA tensegrity triangles that forms through non‐canonical sticky end interactions. Here, we find a series of mechanisms to program a hexagonal arrangement using: the sticky end sequence; triangle edge torsional stress; and crystallization condition. We showcase cross‐talking between Watson–Crick and non‐canonical sticky ends in which the ratio between the two dictates segregation by crystal forms or combination into composite crystals. Finally, we develop a method for reconfiguring the long‐range geometry of formed crystals from rhombohedral to hexagonal and vice versa. These data demonstrate fine control over non‐canonical motifs and their topological self‐assembly. This will vastly increase the programmability, functionality, and versatility of rationally designed DNA constructs.more » « less
-
Abstract Transcription rates are regulated by the interactions between RNA polymerase, sigma factor, and promoter DNA sequences in bacteria. However, it remains unclear how non-canonical sequence motifs collectively control transcription rates. Here, we combine massively parallel assays, biophysics, and machine learning to develop a 346-parameter model that predicts site-specific transcription initiation rates for any σ70promoter sequence, validated across 22132 bacterial promoters with diverse sequences. We apply the model to predict genetic context effects, design σ70promoters with desired transcription rates, and identify undesired promoters inside engineered genetic systems. The model provides a biophysical basis for understanding gene regulation in natural genetic systems and precise transcriptional control for engineering synthetic genetic systems.more » « less