DNA self‐assembly computation is attractive for its potential to perform massively parallel information processing at the molecular level while at the same time maintaining its natural biocompatibility. It has been extensively studied at the individual molecule level, but not as much as ensembles in 3D. Here, the feasibility of implementing logic gates, the basic computation operations, in large ensembles: macroscopic, engineered 3D DNA crystals is demonstrated. The building blocks are the recently developed DNA double crossover‐like (DXL) motifs. They can associate with each other via sticky‐end cohesion. Common logic gates are realized by encoding the inputs within the sticky ends of the motifs. The outputs are demonstrated through the formation of macroscopic crystals that can be easily observed. This study points to a new direction of construction of complex 3D crystal architectures and DNA‐based biosensors with easy readouts.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Non‐canonical interactions in DNA remain under‐explored in DNA nanotechnology. Recently, many structures with non‐canonical motifs have been discovered, notably a hexagonal arrangement of typically rhombohedral DNA tensegrity triangles that forms through non‐canonical sticky end interactions. Here, we find a series of mechanisms to program a hexagonal arrangement using: the sticky end sequence; triangle edge torsional stress; and crystallization condition. We showcase cross‐talking between Watson–Crick and non‐canonical sticky ends in which the ratio between the two dictates segregation by crystal forms or combination into composite crystals. Finally, we develop a method for reconfiguring the long‐range geometry of formed crystals from rhombohedral to hexagonal and vice versa. These data demonstrate fine control over non‐canonical motifs and their topological self‐assembly. This will vastly increase the programmability, functionality, and versatility of rationally designed DNA constructs.
-
Abstract Tile‐based DNA self‐assembly is a powerful approach for nano‐constructions. In this approach, individual DNA single strands first assemble into well‐defined structural tiles, which, then, further associate with each other into final nanostructures. It is a general assumption that the lower‐level structures (tiles) determine the higher‐level, final structures. In this study, we present concrete experimental data to show that higher‐level structures could, at least in the current example, also impact on the formation of lower‐level structures. This study prompts questions such as: how general is this phenomenon in programmed DNA self‐assembly and can we turn it into a useful tool for fine tuning DNA self‐assembly?
-
Abstract The successful self‐assembly of tensegrity triangle DNA crystals heralded the ability to programmably construct macroscopic crystalline nanomaterials from rationally‐designed, nanoscale components. This 3D DNA tile owes its “tensegrity” nature to its three rotationally stacked double helices locked together by the tensile winding of a center strand segmented into 7 base pair (bp) inter‐junction regions, corresponding to two‐thirds of a helical turn of DNA. All reported tensegrity triangles to date have employed turn inter‐junction segments, yielding right‐handed, antiparallel, “J1” junctions. Here a minimal DNA triangle motif consisting of 3‐bp inter‐junction segments, or one‐third of a helical turn is reported. It is found that the minimal motif exhibits a reversed morphology with a left‐handed tertiary structure mediated by a locally‐parallel Holliday junction—the “L1” junction. This parallel junction yields a predicted helical groove matching pattern that breaks the pseudosymmetry between tile faces, and the junction morphology further suggests a folding mechanism. A Rule of Thirds by which supramolecular chirality can be programmed through inter‐junction DNA segment length is identified. These results underscore the role that global topological forces play in determining local DNA architecture and ultimately point to an under‐explored class of self‐assembling, chiral nanomaterials for topological processes in biological systems.
-
Abstract The rational design of nanoscopic DNA tiles has yielded highly ordered crystalline matter in 2D and 3D. The most well‐studied 3D tile is the DNA tensegrity triangle, which is known to self‐assemble into macroscopic crystals. However, contemporary rational design parameters for 3D DNA crystals nearly universally invoke integer numbers of DNA helical turns and Watson–Crick (WC) base pairs. In this study, 24‐bp edges are substituted into a previously 21‐bp (two helical turns of DNA) tensegrity triangle motif to explore whether such unconventional motif can self‐assemble into 3D crystals. The use of noncanonical base pairs in the sticky ends results in a cubic arrangement of tensegrity triangles with exceedingly high symmetry, assembling a lattice from winding helical axes and diamond‐like tessellation patterns. Reverting this motif to sticky ends with Watson–Crick pairs results in a trigonal hexagonal arrangement, replicating this diamond arrangement in a hexagonal context. These results showcase that the authors can generate unexpected, highly complex, pathways for materials design by testing modifications to 3D tiles without prior knowledge of the ensuing symmetry. This study expands the rational design toolbox for DNA nanotechnology; and it further illustrates the existence of yet‐unexplored arrangements of crystalline soft matter.
-
Abstract A major challenge in material design is to couple nanoscale molecular and supramolecular events into desired chemical, physical, and mechanical properties at the macroscopic scale. Here, a novel self‐assembled DNA crystal actuator is reported, which has reversible, directional expansion and contraction for over 50 μm in response to versatile stimuli, including temperature, ionic strength, pH, and redox potential. The macroscopic actuation is powered by cooperative dissociation or cohesion of thousands of DNA sticky ends at the designed crystal contacts. The increase in crystal porosity and cavity in the expanded state dramatically enhances the crystal capability to accommodate/encapsulate nanoparticles/proteins, while the contraction enables a “sponge squeezing” motion for releasing nanoparticles. This crystal actuator is envisioned to be useful for a wide range of applications, including powering self‐propelled robotics, sensing subtle environmental changes, constructing functional hybrid materials, and working in drug controlled‐release systems.
-
Abstract The DNA tensegrity triangle is known to reliably self‐assemble into a 3D rhombohedral crystalline lattice via sticky‐end cohesion. Here, the library of accessible motifs is expanded through covalent extensions of intertriangle regions and sticky‐end‐coordinated linkages of adjacent triangles with double helical segments using both geometrically symmetric and asymmetric configurations. The molecular structures of 18 self‐assembled architectures at resolutions of 3.32–9.32 Å are reported; the observed cell dimensions, cavity sizes, and cross‐sectional areas agree with theoretical expectations. These data demonstrate that fine control over triclinic and rhombohedral crystal parameters and the customizability of more complex 3D DNA lattices are attainable via rational design. It is anticipated that augmented DNA architectures may be fine‐tuned for the self‐assembly of designer nanocages, guest–host complexes, and proscriptive 3D nanomaterials, as originally envisioned. Finally, designer asymmetric crystalline building blocks can be seen as a first step toward controlling and encoding information in three dimensions.
-
Abstract A quasi‐one‐dimensional organic semiconductor, hepta(p‐phenylene vinylene) (HPV), was incorporated into a DNA tensegrity triangle motif using a covalent strategy. 3D arrays were self‐assembled from an HPV‐DNA pseudo‐rhombohedron edge by rational design and characterized by X‐ray diffraction. Templated by the DNA motif, HPV molecules exist as single‐molecule fluorescence emitters at the concentration of 8 mM within the crystal lattice. The anisotropic fluorescence emission from HPV‐DNA crystals indicates HPV molecules are well aligned in the macroscopic 3D DNA lattices. Sophisticated nanodevices and functional materials constructed from DNA can be developed from this strategy by addressing functional components with molecular accuracy.
-
Abstract Supramolecular polymers have unique characteristics such as self‐healing and easy processing. However, the scope of their structures is limited to mostly either flexible, random coils or rigid, straight chains. By broadening this scope, novel properties, functions, and applications can be explored. Here, DNA is used as a model system to engineer innovative, nanoscaled morphologies of supramolecular polymers. Each polymer chain consists of multiple copies of the same short (38–46 nucleotides long) DNA strand. The component DNA strands first dimerize into homo‐dimers, which then further assemble into long polymer chains. By subtly tuning the design, a range of polymer morphologies are obtained; including straight chains, spirals, and closed rings with finite sizes. Such structures are confirmed by AFM imaging and predicted by molecular coarse simulation.
-
Abstract Branched DNA motifs serve as the basic construction elements for all synthetic DNA nanostructures. However, precise control of branching orientation remains a key challenge to further heighten the overall structural order. In this study, we use two strategies to control the branching orientation. The first one is based on immobile Holliday junctions which employ specific nucleotide sequences at the branch points which dictate their orientation. The second strategy is to use angle‐enforcing struts to fix the branching orientation with flexible spacers at the branch points. We have also demonstrated that the branching orientation control can be achieved dynamically, either by canonical Watson–Crick base pairing or non‐canonical nucleobase interactions (e.g., i‐motif and G‐quadruplex). With precise angle control and feedback from the chemical environment, these results will enable novel DNA nanomechanical sensing devices, and precisely‐ordered three‐dimensional architectures.