skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Paradigms of frustration in superionic solid electrolytes
Superionic solid electrolytes have widespread use in energy devices, but the fundamental motivations for fast ion conduction are often elusive. In this Perspective, we draw upon atomistic simulations of a wide range of superionic conductors to illustrate some ways frustration can lower diffusion cation barriers in solids. Based on our studies of halides, oxides, sulfides and hydroborates and a survey of published reports, we classify three types of frustration that create competition between different local atomic preferences, thereby flattening the diffusive energy landscape. These include chemical frustration, which derives from competing factors in the anion–cation interaction; structural frustration, which arises from lattice arrangements that induce site distortion or prevent cation ordering; and dynamical frustration, which is associated with temporary fluctuations in the energy landscape due to anion reorientation or cation reconfiguration. For each class of frustration, we provide detailed simulation analyses of various materials to show how ion mobility is facilitated, resulting in stabilizing factors that are both entropic and enthalpic in origin. We propose the use of these categories as a general construct for classifying frustration in superionic conductors and discuss implications for future development of suitable descriptors and improvement strategies. This article is part of the Theo Murphy meeting issue ‘Understanding fast-ion conduction in solid electrolytes’.  more » « less
Award ID(s):
1710630
PAR ID:
10302695
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
379
Issue:
2211
ISSN:
1364-503X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Oxides with a face-centred cubic (fcc) anion sublattice are generally not considered as solid-state electrolytes as the structural framework is thought to be unfavourable for lithium (Li) superionic conduction. Here we demonstrate Li superionic conductivity in fcc-type oxides in which face-sharing Li configurations have been created through cation over-stoichiometry in rocksalt-type lattices via excess Li. We find that the face-sharing Li configurations create a novel spinel with unconventional stoichiometry and raise the energy of Li, thereby promoting fast Li-ion conduction. The over-stoichiometric Li–In–Sn–O compound exhibits a total Li superionic conductivity of 3.38 × 10−4 S cm−1at room temperature with a low migration barrier of 255 meV. Our work unlocks the potential of designing Li superionic conductors in a prototypical structural framework with vast chemical flexibility, providing fertile ground for discovering new solid-state electrolytes. 
    more » « less
  2. Abstract The correlation between lattice chemistry and cation migration in high‐entropy Li+conductors is not fully understood due to challenges in characterizing anion disorder. To address this issue, argyrodite family of Li+conductors, which enables structural engineering of the anion lattice, is investigated. Specifically, new argyrodites, Li5.3PS4.3Cl1.7−xBrx(0 ≤x≤ 1.7), with varying anion entropy are synthesized and X‐ray diffraction, neutron scattering, and multinuclear high‐resolution solid‐state nuclear magnetic resonance (NMR) are used to determine the resulting structures. Ion and lattice dynamics are determined using variable‐temperature multinuclear NMR relaxometry and maximum entropy method analysis of neutron scattering, aided by constrained ab initio molecular dynamics calculations. 15 atomic configurations of anion arrangements are identified, producing a wide range of local lattice dynamics. High entropy in the lattice structure, composition, and dynamics stabilize otherwise metastable Li‐deficient structures and flatten the energy landscape for cation migration. This resulted in the highest room‐temperature ionic conductivity of 26 mS cm−1and a low activation energy of 0.155 eV realized in Li5.3PS4.3Cl0.7Br, where anion disorder is maximized. This study sheds light on the complex structure–property relationships of high‐entropy superionic conductors, highlighting the significance of heterogeneity in lattice dynamics. 
    more » « less
  3. Abstract Over the past decade, solid‐state batteries have garnered significant attentions due to their potentials to deliver high energy density and excellent safety. Considering the abundant sodium (Na) resources in contrast to lithium (Li), the development of sodium‐based batteries has become increasingly appealing. Sulfide‐based superionic conductors are widely considered as promising solid eletcrolytes (SEs) in solid‐state Na batteries due to the features of high ionic conductivity and cold‐press densification. In recent years, tremendous efforts have been made to investigate sulfide‐based Na‐ion conductors on their synthesis, compositions, conductivity, and the feasibility in batteries. However, there are still several challenges to overcome for their practical applications in high performance solid‐state Na batteries. This article provides a comprehensive update on the synthesis, structure, and properties of three dominant sulfide‐based Na‐ion conductors (Na3PS4, Na3SbS4, and Na11Sn2PS12), and their families that have a variety of anion and cation doping. Additionally, the interface stability of these sulfide electrolytes toward the anode is reviewed, as well as the electrochemical performance of solid‐state Na batteries based on different types of cathode materials (metal sulfides, oxides, and organics). Finally, the perspective and outlook for the development and practical utilization of sulfide‐based SE in solid‐state batteries are discussed. 
    more » « less
  4. Solid-state batteries are attractive energy storage systems as a result of their inherent safety, but their development hinges on advanced solid-state electrolytes (SSEs). Most SSEs remain largely confined to single-anion systems (e.g., sulfides, oxides, halides, and polymers). Through mixed-anion design strategy, we develop crystalline Li3Ta3O4Cl10(LTOC) and its derivatives with excellent ionic conductivities (up to 13.7 millisiemens per centimeter at 25°C) and electrochemical stability. The LTOC structure features mixed-anion spiral chains, consisting of corner-shared oxygen and terminal chlorine atoms, which induces continuous “tetrahedron-tetrahedron” Li-ion migration pathways with low energy barriers. Additionally, LTOC demonstrates holistic cathode compatibility, enabling solid-state batteries operation at 4.9 volts versus Li/Li+and low temperature, down to −50°C. These findings describe a promising class of superionic conductors for high-performance solid-state batteries. 
    more » « less
  5. Magnesium-ion-conducting solid polymer electrolytes have been studied for rechargeable Mg metal batteries, one of the beyond-Li-ion systems. In this paper, magnesium polymer electrolytes with magnesium bis(trifluoromethane)sulfonimide (Mg(TFSI)2) salt in poly(ε-caprolactone-co-trimethylene carbonate) (PCL-PTMC) were investigated and compared with the poly(ethylene oxide) (PEO) analogs. Both thermal properties and vibrational spectroscopy indicated that the total ion conduction in the PEO electrolytes was dominated by the anion conduction due to strong polymer coordination with fully dissociated Mg2+. On the other hand, in PCL-PTMC electrolytes, there is relatively weaker polymer–cation coordination and increased anion–cation coordination. Sporadic Mg- and F-rich particles were observed on the Cu electrodes after polarization tests in Cu|Mg cells with PCL-PTMC electrolyte, suggesting that Mg was conducted in the ion complex form (MgxTFSIy) to the copper working electrode to be reduced which resulted in anion decomposition. However, the Mg metal deposition/stripping was not favorable with either Mg(TFSI)2in PCL-PTMC or Mg(TFSI)2in PEO, which inhibited quantitative analysis of magnesium conduction. A remaining challenge is thus to accurately assess transport numbers in these systems. 
    more » « less