skip to main content

This content will become publicly available on December 7, 2022

Title: Rapid prototyping of cell culture microdevices using parylene-coated 3D prints
Fabrication of microfluidic devices by photolithography generally requires specialized training and access to a cleanroom. As an alternative, 3D printing enables cost-effective fabrication of microdevices with complex features that would be suitable for many biomedical applications. However, commonly used resins are cytotoxic and unsuitable for devices involving cells. Furthermore, 3D prints are generally refractory to elastomer polymerization such that they cannot be used as master molds for fabricating devices from polymers ( e.g. polydimethylsiloxane, or PDMS). Different post-print treatment strategies, such as heat curing, ultraviolet light exposure, and coating with silanes, have been explored to overcome these obstacles, but none have proven universally effective. Here, we show that deposition of a thin layer of parylene, a polymer commonly used for medical device applications, renders 3D prints biocompatible and allows them to be used as master molds for elastomeric device fabrication. When placed in culture dishes containing human neurons, regardless of resin type, uncoated 3D prints leached toxic material to yield complete cell death within 48 hours, whereas cells exhibited uniform viability and healthy morphology out to 21 days if the prints were coated with parylene. Diverse PDMS devices of different shapes and sizes were easily cast from parylene-coated 3D printed more » molds without any visible defects. As a proof-of-concept, we rapid prototyped and tested different types of PDMS devices, including triple chamber perfusion chips, droplet generators, and microwells. Overall, we suggest that the simplicity and reproducibility of this technique will make it attractive for fabricating traditional microdevices and rapid prototyping new designs. In particular, by minimizing user intervention on the fabrication and post-print treatment steps, our strategy could help make microfluidics more accessible to the biomedical research community. « less
Authors:
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Award ID(s):
2033800
Publication Date:
NSF-PAR ID:
10302698
Journal Name:
Lab on a Chip
Volume:
21
Issue:
24
ISSN:
1473-0197
Sponsoring Org:
National Science Foundation
More Like this
  1. Combination of stem cell technology and 3D biofabrication approaches provides physiological similarity to in vivo tissues and the capability of repairing and regenerating damaged human tissues. Mesenchymal stem cells (MSCs) have been widely used for regenerative medicine applications because of their immunosuppressive properties and multipotent potentials. To obtain large amount of high-quality MSCs without patient donation and invasive procedures, we differentiated MSCs from human-induced pluripotent stem cells (hiPSC-MSCs) using serum-free E6 media supplemented with only one growth factor (bFGF) and two small molecules (SB431542 and CHIR99021). The differentiated cells showed a high expression of common MSC-specific surface markers (CD90, CD73,more »CD105, CD106, CD146, and CD166) and a high potency for osteogenic and chondrogenic differentiation. With these cells, we have been able to manufacture MSC tissue rings with high consistency and robustness in pluronic-coated reusable PDMS devices. The MSC tissue rings were characterized based on inner diameter and outer ring diameter and observed cell-type-dependent tissue contraction induced by cell-matrix interaction. Our approach of simplified hiPSC-MSC differentiation, modular fabrication procedure, and serum-free culture conditions has a great potential for scalable manufacturing of MSC tissue rings for different regenerative medicine applications.« less
  2. Abstract

    The fabrication of three-dimensional (3D) microscale structures is critical for many applications, including strong and lightweight material development, medical device fabrication, microrobotics, and photonic applications. While 3D microfabrication has seen progress over the past decades, complex multicomponent integration with small or hierarchical feature sizes is still a challenge. In this study, an optical positioning and linking (OPAL) platform based on optical tweezers is used to precisely fabricate 3D microstructures from two types of micron-scale building blocks linked by biochemical interactions. A computer-controlled interface with rapid on-the-fly automated recalibration routines maintains accuracy even after placing many building blocks. OPAL achievesmore »a 60-nm positional accuracy by optimizing the molecular functionalization and laser power. A two-component structure consisting of 448 1-µm building blocks is assembled, representing the largest number of building blocks used to date in 3D optical tweezer microassembly. Although optical tweezers have previously been used for microfabrication, those results were generally restricted to single-material structures composed of a relatively small number of larger-sized building blocks, with little discussion of critical process parameters. It is anticipated that OPAL will enable the assembly, augmentation, and repair of microstructures composed of specialty micro/nanomaterial building blocks to be used in new photonic, microfluidic, and biomedical devices.

    « less
  3. Hybrid microfluidic systems that are composed of multiple different types of substrates have been recognized as a versatile and superior platform, which can draw benefits from different substrates while avoiding their limitations. This review article introduces the recent innovations of different types of low-cost hybrid microfluidic devices, particularly focusing on cost-effective polymer- and paper-based hybrid microfluidic devices. In this article, the fabrication of these hybrid microfluidic devices is briefly described and summarized. We then highlight various hybrid microfluidic systems, including polydimethylsiloxane (PDMS)-based, thermoplastic-based, paper/polymer hybrid systems, as well as other emerging hybrid systems (such as thread-based). The special benefits ofmore »using these hybrid systems have been summarized accordingly. A broad range of biological and biomedical applications using these hybrid microfluidic devices are discussed in detail, including nucleic acid analysis, protein analysis, cellular analysis, 3D cell culture, organ-on-a-chip, and tissue engineering. The perspective trends of hybrid microfluidic systems involving the improvement of fabrication techniques and broader applications are also discussed at the end of the review.« less
  4. Additive manufacturing (or "three-dimensional (3D) printing") technologies offer unique means to expand the architectural versatility with which microfluidic systems can be designed and constructed. In particular, "direct laser writing (DLW)" supports submicron-scale 3D printing via two-photon (or multi-photon) polymerization; however, such high resolutions are poorly suited for fabricating the macro-to-micro interfaces (i.e., fluidic access ports) critical to microfluidic applications. To bypass this issue, here we present a novel strategy for using DLW to 3D print architecturally complex microfluidic structures directly onto-and notably, fully integrated with-macroscale fused silica tubes. Fabrication and experimental results for this "ex situ DLW (esDLW)" approach revealedmore »effective structure-to-tube sealing, with fluidic integrity maintained during fluid transport from macroscale tubing, into and through demonstrative 3D printed microfluidic structures, and then out of designed outlets. These results suggest that the presented DLW-based printing approach for externally coupling microfluidic structures to macroscale fluidic systems holds promise for emerging applications spanning chemical, biomedical, and soft robotics fields.« less
  5. Microfabrication and assembly of a Three-Dimensional Microneedle Electrode Array (3D MEA) based on a glass-stainless steel platform is demonstrated involving the utilization of non-traditional “Makerspace Microfabrication” techniques featuring cost-effective, rapid fabrication and an assorted biocompatible material palette. The stainless steel microneedle electrode array was realized by planar laser micromachining and out-of-plane transitioning to have a 3D configuration with perpendicular transition angles. The 3D MEA chip is bonded onto a glass die with metal traces routed to the periphery of the chip for electrical interfacing. Confined precision drop casting (CPDC) of PDMS is used to define an insulation layer and realizemore »the 3D microelectrodes. The use of glass as a substrate offers optical clarity allowing for simultaneous optical and electrical probing of electrogenic cells. Additionally, an interconnect using 3D printing and conductive ink casting has been developed which allows metal traces on the glass chip to be transitioned to the bottomside of the device for interfacing with commercial data acquisition/analysis equipment. The 3D MEAs demonstrate an average impedance/phase of ∼13.3 kΩ/−12.1° at 1 kHz respectively, and an average 4.2 μV noise. Lastly, electrophysiological activity from an immortal cardiomyocyte cell line was recorded using the 3D MEA demonstrating end to end device development.« less