We characterize three commercial resins suitable for three-dimensional two-photon printing of mm3volume micro-optical components for visible light –IP-S, IP-n162, and IP-Visio– under different print modes and post-processing conditions. Due to the combination of cured resin absorption and bulk scattering, we find a maximum total printed thickness of 4 mm (or greater) for at least 50% transmittance of red light, up to 2 mm for green light, and large maximum thickness variation for blue light (0.1 to 1 mm).
more »
« less
Characterization of Photocurable IP-PDMS for Soft Micro Systems Fabricated by Two-Photon Polymerization 3D Printing
Recent developments in micro-scale additive manufacturing (AM) have opened new possibilities in state-of-the-art areas, including microelectromechanical systems (MEMS) with intrinsically soft and compliant components. While fabrication with soft materials further complicates micro-scale AM, a soft photocurable polydimethylsiloxane (PDMS) resin, IP-PDMS, has recently entered the market of two-photon polymerization (2PP) AM. To facilitate the development of microdevices with soft components through the application of 2PP technique and IP-PDMS material, this research paper presents a comprehensive material characterization of IP-PDMS. The significance of this study lies in the scarcity of existing research on this material and the thorough investigation of its properties, many of which are reported here for the first time. Particularly, for uncured IP-PDMS resin, this work evaluates a surface tension of 26.7 ± 4.2 mN/m, a contact angle with glass of 11.5 ± 0.6°, spin-coating behavior, a transmittance of more than 90% above 440 nm wavelength, and FTIR with all the properties reported for the first time. For cured IP-PDMS, novel characterizations include a small mechanical creep, a velocity-dependent friction coefficient with glass, a typical dielectric permittivity value of 2.63 ± 0.02, a high dielectric/breakdown strength for 3D-printed elastomers of up to 73.3 ± 13.3 V/µm and typical values for a spin coated elastomer of 85.7 ± 12.4 V/µm, while the measured contact angle with water of 103.7 ± 0.5°, Young’s modulus of 5.96 ± 0.2 MPa, and viscoelastic DMA mechanical characterization are compared with the previously reported values. Friction, permittivity, contact angle with water, and some of the breakdown strength measurements were performed with spin-coated cured IP-PDMS samples. Based on the performed characterization, IP-PDMS shows itself to be a promising material for micro-scale soft MEMS, including microfluidics, storage devices, and micro-scale smart material technologies.
more »
« less
- PAR ID:
- 10476253
- Publisher / Repository:
- MDPI Polymers
- Date Published:
- Journal Name:
- Polymers
- Volume:
- 15
- Issue:
- 22
- ISSN:
- 2073-4360
- Page Range / eLocation ID:
- 4377
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT There is growing evidence that minimizing the mechanical mismatch between neural implants and brain tissue mitigates inflammatory, biological responses at the interface under long-term implant conditions. The goal of this study is to develop a brain-like soft, conductive neural interface and use an improvised, penetrating microindentation technique reported by us earlier to quantitatively assess the (a) elastic modulus of the neural interface after implantation, (b) mechanical stresses during penetration of the probe, and (c) periodic stresses at steady-state due to tissue micromotion around the probe. We fabricated poly- dimethylsiloxane (PDMS) matrices with multi-walled carbon nanotubes (MWCNTs) using two distinct but carefully calibrated cross-linking ratios, resulting in hard (elastic modulus∼484 kPa) or soft, brain-like (elastic modulus∼5.7 kPa) matrices, the latter being at least 2 orders of magnitude softer than soft neural interfaces reported so far. Subsequent loading of the hard and soft silicone based matrices with (100% w/w) low-molecular weight PDMS siloxanes resulted in further decrease in the elastic modulus of both matrices. Carbon probes with soft PDMS coating show significantly less maximum axial forces (-587 ± 51.5 µN) imposed on the brain than hard PDMS coated probes (-1,253 ± 252 µN) during and after insertion. Steady-state, physiological micromotion related stresses were also significantly less for soft- PDMS coated probes (55.5 ± 17.4 Pa) compared to hard-PDMS coated probes (141.0 ± 21.7 Pa). The penetrating microindentation technique is valuable to quantitatively assess the mechanical properties of neural interfaces in both acute and chronic conditions.more » « less
-
Abstract Periodic micro/nanoscale structures from nature have inspired the scientific community to adopt surface design for various applications, including superhydrophobic drag reduction. One primary concern of practical applications of such periodic microstructures remains the scalability of conventional microfabrication technologies. This study demonstrates a simple template‐free scalable manufacturing technique to fabricate periodic microstructures by controlling the ribbing defects in the forward roll coating. Viscoelastic composite coating materials are designed for roll‐coating using carbon nanotubes (CNT) and polydimethylsiloxane (PDMS), which helps achieve a controllable ribbing with a periodicity of 114–700 µm. Depending on the process parameters, the patterned microstructures transition from the linear alignment to a random structure. The periodic microstructure enables hydrophobicity as the water contact angles of the samples ranged from 128° to 158°. When towed in a static water pool, a model boat coated with the microstructure film shows 7%–8% faster speed than the boat with a flat PDMS film. The CNT addition shows both mechanical and electrical properties improvement. In a mechanical scratch test, the cohesive failure of the CNT‐PDMS film occurs in ≈90% higher force than bare PDMS. Moreover, the nonconductive bare PDMS shows sheet resistance of 747.84–22.66 Ω □−1with 0.5 to 2.5 wt% CNT inclusion.more » « less
-
Small scale contact between a soft, liquid-coated layer and a stiff surface is common in many situations, from synovial fluid on articular cartilage to adhesives in humid environments. Moreover, many model studies on soft adhesive contacts are conducted with soft silicone elastomers, which possess uncrosslinked liquid molecules ( i.e. silicone oil) when the modulus is low. We investigate how the thickness of a silicone oil layer on a soft substrate relates to the indentation depth of glass microspheres in contact with crosslinked PDMS, which have a modulus of <10 kPa. The particles indent into the underlying substrate more as a function of decreasing oil layer thickness. This is due to the presence of the liquid layer at the surface that causes capillary forces to pull down on the particle. A simple model that balances the capillary force of the oil layer and the minimal particle–substrate adhesion with the elastic and surface tension forces from the substrate is proposed to predict the particle indentation depth.more » « less
-
Biology is replete with examples, at length scales ranging from the molecular (ligand–receptor binding) to the mesoscopic scale (wing arresting structures on dragonflies) where shape-complementary surfaces are used to control interfacial mechanical properties such as adhesion, friction, and contact compliance. Related bio-inspired and biomimetic structures have been used to achieve unique interfacial properties such as friction and adhesion enhancement, directional and switchable properties. The ability to tune friction by altering surface structures offers advantages in various fields, such as soft robotics and tire manufacturing. Here, we present a study of friction between polydimethylsiloxane (PDMS) samples with surfaces patterned with pillar-arrays. When brought in contact with each other the two samples spontaneously produce a Moire´ pattern that can also be represented as an array of interfacial dislocations that depends on interfacial misorientation and lattice spacing. Misorientation alone produces an array of screw dislocations, while lattice mismatch alone produces an array of edge dislocations. Relative sliding motion is accompanied by interfacial glide of these patterns. The frictional force resisting dislocation glide arises from periodic single pillar–pillar contact and sliding. We study the behavior of pillar–pillar contact with larger (millimeter scale) pillar samples. Inter-pillar interaction measurements are combined with a geometric model for relative sliding to calculate frictional stress that is in good agreement with experiments.more » « less
An official website of the United States government

